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The ubiquitous Parton Shower

Parton Showers enter one way or another in almost 95% of all ATLAS and CMS
analyses. Collider physics would not be the same without them.
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The ubiquitous Parton Shower
Collider scene currently domi-
nated by LHC, but the physics pro-
gram relies on legacy e+e− collid-
ers like LEP, for tuning of event
generators.
There is excellent agreement, after
tuning, of for instance the Pythia8
generator and data taken at L3.
The high precision which future
e+e− colliders will likely reach, has
to be met with equally high theo-
retical precision.

[Plot from Skands, et al. (1404.5630)]
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Differences matter!
Jet energy calibration uncertainties feed in to all jet analyses at the LHC

Differences amongst MC generators is the dominant uncertainty
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Consider measurement of W boson mass

mW = 80354 ± 23stat ± 10exp ± 17theory ± 9PDF MeV

But differences matter…

Melissa van Beekveld22

[2109.01113]

Measurements of  in 
 decays used to 

validate the MC predictions for 

pZ
T

Z/γ* → l+l−
pW

T

[1009.1580]ϕ* = tan((π − Δϕ)/2)
cosh(Δη/2) ∼ pZ

T

mll

Different parton-
shower models

Analytic prediction
Different PDF

The envelope of shifts in  
originating from differences in these 
shower predictions is the dominant 

theory uncertainty (11 MeV)

mW
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Machine learning and jet sub-structure

[1511.05190]

Machine learning might learn un-physical “features” from MC → can
significantly impact the potential of new physics searches.
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A Parton Shower in a nutshell
In one line: A Parton Shower is an iterative stochastic algorithm that takes n particles and maps
them to to n+1 particles.

In order to do so one needs:

• A kinematic ordering variable, v, so that every phase space point is only reached once (and a
cut-off vcut ∼ΛQCD)

→ Standard dipole showers take v ∼ kT but many sensible choices exists

• A recoil map {pn}→ {pn+1} to ensure momentum conservation and on-shellness of final-state
particles

→ Typically either local (only splitting dipole takes recoil) or global (all partons take recoil)

• An evolution equation governing the probability for a splitting ĩj̃ → ijk to take place

dPĩj̃→ijk ∼
αS

π
d lnvdη̄

dϕ
2π

[
g(η̄)ziPik(zi)+g(−η̄)zjPjk(zj)

]
(1)

! Constrained by QCD
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A Parton Shower in a nutshell

courtesy G. Salam
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Accuracy of Parton Showers
How do you even define the accuracy of an algorithm as described above?
When applying perturbation theory to total cross sections, it is easy to talk
about the accuracy (LO, NLO, NNLO, ...)

σ=
∑

n
cnα

n
S (2)

Similarly for logarithmically enhanced observables we may talk about their
logarithmical accuracy (LL, NLL, NNLL, ...)

σ(O< eL) = σtot exp
[

1
αS

g1(αSL)+g2(αSL)+αSg3(αSL)+ · · ·
]

(3)

when αS << 1, αSL ∼−1.
But both of these equations are observable dependent.
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Accuracy of Parton Showers
At colliders we can ask arbitrary questions about an event. The same is true
for parton showers ( + hadronisation), e.g.

• Number (multiplicity) of particles in event (or jet)
• Energy in detector slice
• Angular distributions inside jets
• Even if we don’t ask, machine learning might...

We therefore need to establish how to determine the logarithmic accuracy
with which a parton shower can make predictions.
To do so we need to introduce the Lund Plane (B. Andersson et al (1989) & F.
Dreyer et al. [1807.04758])
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The Lund Plane

[1807.04758]

• Cluster the event with the Cam-
bridge/Aachen algorithm, producing an
angular ordered clustering sequence.

• Decluster the last clustering and record the
transverse momentum and the opening angle
of the declustering (plus other kinematics).

• Iterate along the hardest branch after each
declustering to produce the primary Lund
Plane.

• Following the softer branch produces the sec-
ondary, tertiary, etc Lund Plane.

• One can impose cuts easily on the decluster-
ings (e.g. that they satisfy z > zcut)
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Logarithms in the Lund Plane

[1807.04758]

• The emission probability in the Lund Plane is
then

dρ ∼αS d lnkT d lnθ

• Hence emissions that are well-separated in
both directions are associated with double log-
arithms of the form αn

S L2n

• Emissions separated along one direction are
associated with single logarithms of the form
αn

S Ln

• Emissions that are close in the Lund Plane are
associated with a factor αn

S

• We are now ready to state the PanScales NLL
criteria for Parton Showers
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NLL accurate Parton Showers
Fixed Order Matrix Element Condition
• Shower must reproduce fixed order n-particle matrix elements when

emissions are well-separated in the Lund Plane, ie when the cross section is
logarithmically enhanced.

• Supplement this with unitarity, 2-loop running and correct cusp anomalous
dimension

Resummation Condition
• Shower must reproduce known NLL analytical resummations
• Global event shapes
• Multiplicity
• Non-global observables (slice observables), technically at LL

[1805.09327] & [2002.11114]
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NLL accurate Parton Showers
Fixed Order Matrix Element Condition
• Fairly straightforward. Generate n emissions with your shower and compare

to either factorised matrix elements (numerically very stable) or a full matrix
element in some kinematic limit.

• Be careful to cover the collinear/soft phase space.
Resummation Condition
• This in general is trickier for 2 reasons:
• Requires the existence of NLL analytical results.
• Can’t just compare

ΣPS(αSL)
ΣNLL(αSL)

=
ΣPS(αSL)

σtot exp
[

1
αS

g1(αSL)+g2(αSL)
]

as the shower in general induces spurious higher order terms.
• How do we disentangle spurious “NNLL” terms from genuine NLL

violations?
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NLL tests

[2002.11114 ]

• Run the full shower with a specific (finite)
value of αS = αS(Q) and measure your
favourite observable (that you can resum to
NLL)

• Take the ratio to NLL and see that it is not flat.

• To see if there is an NLL mistake reduce
αS while keeping αSL fixed, ie include more
collinear and soft emissions.

• Genuine NLL effects are (αSL)n and are there-
fore unchanged. NNLL on the other hand
goes as αS(αSL)n and should therefore van-
ish.

• Go as small in αS as possible and extract αS →
0.

• Now is it flat?
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NLL tests
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• Take the ratio to NLL and see that it is not flat.

• To see if there is an NLL mistake reduce
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collinear and soft emissions.

• Genuine NLL effects are (αSL)n and are there-
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goes as αS(αSL)n and should therefore van-
ish.

• Go as small in αS as possible and extract αS →
0.

• Now is it flat?
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NLL tests summary
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NLL tests summary
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Taming the accuracy of event generators, part 2Gavin P. Salam

Where is shower accuracy useful / necessary?

16

shower  ME  → matching essential

≠
2

hard scale

non-perturbative region

} Full matrix-element needed 
for  ?kt ≳ 0.1 ̂s

}  of first emission 
(median and 68% interval)
kt

} median  of 2nd, 3rd, etc. 
emissions

kt

1

2
3
4

the shower will be attempting 
to get all of these “right”, 
together with the virtual 
corrections
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Comparing parton showers

10-2
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Pythia [LL]
Dire v1 [LL]

The PanScales showers all have
the same formal NLL accuracy.
There can be a significant spread
between predictions of the various
showers, here shown for Thrust,
indicating that spurious NNLL
terms are large.
The showers in particular show a
large spread than the two not-NLL
showers, Pythia and Dire, do.
Are NLL showers less accurate
than LL showers??
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Comparing parton showers
NO! If we include scale variations this becomes very clear. For showers that
have been established to be NLL accurate, for an emission carrying away a
momentum fraction z, the emission strength is taken proportional to1

αS(µR)

(
1+

KαS(µR)

2π
+

2(1− z)β0αS(µR)

2π
ln(xR)

)
, µR = xRµ

central
R . (4)

The factor 1− z ensures that we only apply the scale compensation in the soft
limit, and not the hard where the shower does include all the necessary
ingredients. For showers that are not LL we include the term proportional to K
(CMW scheme) but omit the 1− z term.
In order to assess missing terms in the hard matching region we take the
emission strengt proportional to (unless matching that emission)

1+(xhard −1)
k2

T
s

(5)

1Inspired by Mrenna & Skands [1605.08352]
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Scale variations in LL and NLL showers
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Shower variations reduced significantly in the NLL showers. Showers also
almost fully inside LL shower variations. Large discrepancies in hard region
expected - can be fixed by matching.
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Scale variations in matched NLL showers
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When matching LO matrix elements to the PanScales showers the agreement
improves everywhere, not just in the hard region. Probably due to dominance
of the first emission. Hard variations significantly decreased.
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Scale variations with and without matching
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When matching LO matrix elements to the PanScales showers the agreement
improves everywhere, not just in the hard region. Probably due to dominance
of the first emission.
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Scale variations with and without matching for y3
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The agreement after matching is even better for Cambridge y3.
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Conclusions
Parton showers with controlled logarithmic accuracy are emerging.2

Such a program is mandatory for precision QCD studies, and by the time
the CEPC starts running we can expect logaritmically accurate showers to
be the standard
With logaritmic control we can also assign meaningful uncertainties to
shower predictions, thereby making them real predictions.
Still many developments to come...

2See also recent work by Forshaw, Holguin, Plätzer (CVolver), Nagy, Soper (Deductor), Herren,
Höche, Krauss, Reichelt, Schönherr (Alaric)
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