

ATLAS Data Acquisition Phase 2 Outlook

Matías Bonaventura, CERN On behalf of ATLAS TDAQ Collaboration

CEPC International Workshop, September 2022

LHC baseline plan for the next decade

Data Acquisition Challenges for the HL-LHC

Read-out at **1 MHz** 10 x more than today's

Throughput: **4.6 TB/s** ~20 x more than today's

Selected events: **10kHz, 10 PB** 10 x more than today's

Major upgrade of all TDAQ sub-systems

Readout System

Data Handler Data Handler Date Handler L0 1111 K Requests Supervisor Event Aggregator Event Filter Farm

Readout System

Readout System

Readout System

Dataflow design evolution

Full event building at 1 MHz w.r.t Incremental partial build in previous runs Events are fully built in RAM in the processing nodes

Decouple data collection from data analysis

Readout transfer all data to the processing farm (contrary to previous runs)

Dedicated system for selected data Based on HDDs (~10PB)

CEPC Workshop September 2022 - Matias Bonaventura

Ongoing R&D - two complementary strategies

Main concerns and focus of studies

Increased data rate at 1 MHz - x10 with respect to. run 3 Efficiently use network resources in a in 100 GbE environment

Design prototypes

Goal: benchmark applications in realistic environment

Based on run 2 applications

Strategy: maintain message exchange rates under control

Test lab - O(100) servers

Acquired equipment that resembles Phase 2 hardware (including switches with 400 Gbps uplinks) Network efficiency studies

Dataflow simulations

Goal: evaluate different designs and scale up system

PowerDEVS, open-source general purpose discrete event simulation used for run 2

Simulation scenarios for Phase 2

Readout buffer evaluation Network impact of TCP incast Supervisor load balancing policies

Dataflow Simulations

Allows **evaluating different designs** simulating unavailable hardware (e.g. **system scale up**)

Model includes

Network devices and protocols Dataflow DAQ applications Adaptive network topology

Model does not include OSI layers 3 and below Trigger algorithms Hardware usage (e.g. CPU usage)

Dataflow Simulations

Allows **evaluating different designs** and simulating unavailable hardware (e.g. **system scale up**)

Model includes

Network devices and protocols Dataflow DAQ applications Adaptive network topology

Model does not include

OSI layers 3 and below Trigger algorithms Hardware capacity

Comparison of DAQ architectures by simulation

Maximum utilized buffer on the readout nodes

Persistent Storage Design

Original Storage Handler Persistent cache decoupling the detector readout from the event filter

Based on Solid State Drives (SSD) Total throughput of ~7.8 TB/s ~1800 SSDs provide ~36 PB of storage

Event Filter Farm CEPC Workshop September 2022 - Matias Bonaventura

Persistent Storage Design

Market trends updated since project original design in 2017 Cost and endurance

Risk assessed too high Baseline design without persistent storage Significant architecture change

Persistent Storage Design

As alternative secondary design

Viability depends on technology improvement and/or cost reduction

Closely interacting with industry Current Openlab collaboration with Intel

DAOS: A high-performance distributed key-value store, open-source and developed by Intel, taking advantage of persistent memory

DAOS as a drop-in replacement for a persistent Storage Handler

Network

RDMA evaluation and 100 GbE environment

Phase 2 Data Acquisition Network

2 independent network domains

Readout network High-throughput (5 TB/s) Sliced Redundant RDMA (RoCEv2, Infiniband, iWARP)

Dataflow network High-throughput (5 TB/s) All-to-all communication pattern Redundant core layer TCP/IP

Readout network

Remote Direct Memory Access (RDMA) protocol evaluation

InfiniBand (IB)

High-throughput and low-latency protocol stack used in HPC Requires dedicated network hardware

RDMA over Converged Ethernet (RoCEv2)

RDMA encapsulating IB packet over non-reliable UDP Requires support/configuration from the underlying network

iWARP

RDMA over reliable TCP Less requirements on the underlying Ethernet network Simple sender-receiver scenario over 100 Gbps link

Aggregated results on Bandwidth vs Parallel Processes/ Queue Pairs Size

In a many to 1 scenario, all RDMA implementations fill up the link

Dataflow network

RDMA does not provide clear advantages

Network complexity makes iWARP the only option Hardware increased cost

TCP connections over 100GbE

Optimized configuration improves performance: buffers, MSS, coalescing, At least 3 TCP connections to reach

a 90+ Gb/s total throughput

TCP optimized configurations

cubic: default congestion control algorithm

dctcp: uses Explicit Congestion Notification (ECN) to assess the extent of congestion and react more efficiently

rto_min: minimum retransmission timeout set to 1ms (default is 200 ms) **custom coalescing**: interrupt receiver coalescing (512 μ s or 1024 frames)

Dataflow network

Many to 1 traffic pattern

Highly synchronized collection traffic produces instantaneous buffer *oversubscription and drops* Under utilization of network capacity and increased latency

Possible strategies

Deep buffer switches (expensive) Credit-based congestion control (latency) Supervisor controlled assignments

Online Software

Kubernetes Orchestration

Online Software

Manages and operates the components of the system integrating them with the wider ATLAS data taking environment

Highly distributed system Tens of thousands of applications to supervise

Large IT infrastructure The Event Filter farm only will consist of more than 3000 computing nodes

EF Orchestration Requirements

- Support different types of application life-cycles: always-running, run-to-completion and cron-like services
- Allow dynamic and static allocation of processes to computing nodes
- Able to dynamically handle cluster resources (enabling/disabling computation units at runtime, efficient exploitation of the available CPU power and memory)
- Scale to thousands of hosts
- Control and monitor the status of all active processes

A robust and reliable mechanism for the **management of all processes running** in the Event Filter (EF) farm is a requirement to guarantee stable and effective execution of the EF service

Kubernetes

An open-source system for automating deployment, scaling, and management of containerized applications

Has been identified as an **excellent candidate** for the EF farm orchestration

Features and services for application management

- Scheduling of applications based on required resources and other constraints
- Automatic re-scheduling of applications when the application itself fails or the node where the application is running dies
- Built-in support for service discovery and load-balancing
- Management of several storage back-ends, allowing transparent mounting of both local and network storage volumes
- Easy (via command line tools or GUIs) and automated (based on CPU usage) scaling of the number of application instances
- Full exploitation of containerization technologies
- Live project, large community, comprehensive eco-system

Kubernetes Current Status

Installation at the ATLAS experimental site Kubernetes could successfully orchestrate a 2500 servers farm

Performance Evaluation

Container start and stop times for large deployments Simple "pause" containers pre-loaded on the worker nodes

Managed to start about 25000 containers in less than 80 seconds

Conclusions

- HL-LHC upgrade requires a major upgrade of all components of the ATLAS TDAQ
- Impact of technology evolution
 - Full event building thanks to network improvements
 - Persistent storage design on hold due to increased storage cost and endurance updates
 - RDMA-based readout network
 - Management of processing farm with Kubernetes orchestration

- Upcoming challenges
 - Close interaction with industry to track technology updates
 - Incorporate experience from run 3 operations

Questions?

