

RICH detectors at LHCb

Giovanni Cavallero CERN and Imperial College London on behalf of the LHCb RICH collaboration

The 2022 international workshop on the high energy Circular Electron-Positron Collider, 24-28 October, Beijing, China

Outline

- rationale and challenges of hadron identification at LHC
- the LHCb RICH detectors
- evolutions of the RICH system: past, current and future R&D

The LHCb detector during Run 1 and 2

[JINST 3 (2008) S08005]

- the LHCb detector covers the forward region in the 2 $<\eta<$ 5 range
- $\sim 25\%$ of the $bar{b}$ pairs are produced inside the LHCb acceptance
- LHCb ran with an instantaneuos luminosity of ${\cal L}=4\times 10^{32}\,{\rm cm}^{-2}{\rm s}^{-1}$, pile-up ~ 1
- CPV, rare b-hadron decays, spectroscopy, EW, pQCD, heavy ions

A typical *b*-event in LHCb during Run 1 and 2

Hundreds of photons, $\pi^0 \rightarrow \gamma\gamma$ and π^{\pm} are produced in average at the primary vertex (PV) in the full solid angle; tens of K_L^0 and K^{\pm} are produced as well \Rightarrow Large combinatorial background emerging from hadronisation, initial and final state radiation, and from the underlying event

Giovanni Cavallero

Why hadron identification?

Input to flavour tagging (through the detection of the $b \rightarrow c \rightarrow s$ decay chain) and to the second level of software trigger (HLT2)

Distinguish final states of identical topology

RICH detectors at LHCb

Giovanni Cavallero

LHCb requirements and hadron identification techniques

- *p*, *p̄*, *K*[±] and π[±] can be distinguished by determining their mass:
 p = mγβ ⇒ equivalent to measure their velocity β since the momentum is known from the tracking system
- different mechanisms can in principle be exploited to measure β: difference in the time of flight, energy loss via ionisation, transition radiation and Cherenkov radiation
- need to adopt a technique to allow precise (at a per-mille relative precision level) flavour physics measurements, in a harsh hadronic environment with large backgrounds, studying decays involving final state particles of momenta up to 100 GeV
- Ring-Imaging Cherenkov (RICH) detectors with gas radiators are suitable to measure β in a wide range of momenta

LHCb RICH detectors

- RICH1 (C4F10): 3 GeV–40 GeV, 25–300 mrad, $2\times3\times1\,\mathrm{m}^3$
- RICH2 (CF₄): $30 \,\mathrm{GeV}$ -100 GeV, 15–120 mrad, $100 \,\mathrm{m}^3$

The main ingredients driving the performance are **radiators**, **optics and mirrors**, **photon detectors** and **electronics**: any evolution of a RICH system passes through R&D on at least one of these aspects!

RICH detectors at LHCb

Giovanni Cavallero

RICH performance = Cherenkov angle resolution

 $\Delta \beta / \beta = \Delta \theta_C \tan \theta_C$, where $\Delta \theta_C = \sigma_c / \sqrt{N_{ph}} + C_{\text{tracking,alignment,...}}$

- σ_c is the resolution per single photon in a ring. The main contributions to keep under control (disk \rightarrow ring) are:
 - emission point error due to the unknown emission point of the Cherenkov light: optimise the optics of the mirror system to focus the Cherenkov light
 - **pixel size error** due to the finite size of the photon detectors: choose photon detectors with optimal spatial granularity
 - chromatic error due to the radiator dispersion (different Cherenkov angles from the same track): appropriate choice of the radiator material to avoid large variations of the refractive index with the Cherenkov photons energy

- photon yield (N_{ph}) as large as possible
- background counts as low as possible
- efficient pattern recognition keeping the peak occupancy under control (around 30%)

Excellent performance in Run 1 and 2 thanks to an overall single photon Cherenkov angle resolution $\sigma_c^{\rm RICH1} \sim 1.7$ mrad and $\sigma_c^{\rm RICH2} \sim 0.6$ mrad

LHCb upgrades

Observable	Current LHCb	Upgi	Upgrade I	
	$({ m up to } 9{ m fb}^{-1})$	$(23{ m fb}^{-1})$	$(50{ m fb}^{-1})$	$(300{ m fb}^{-1})$
CKM tests				
$\gamma ~(B ightarrow DK, ~etc.)$	4° [9, 10]	1.5°	1°	0.35°
$\phi_s \; \left(B^0_s ightarrow J\!/\!\psi \phi ight)$	$49 \mathrm{mrad}$ [8]	$14\mathrm{mrad}$	$10\mathrm{mrad}$	$4\mathrm{mrad}$
$ V_{ub} / V_{cb} \ (\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu, \ etc.)$	6% [29,30]	3%	_	1%
$a^d_{ m sl}~(B^0 o D^- \mu^+ u_\mu)$	$36 imes 10^{-4} [34]$	8×10^{-4}	$5 imes 10^{-4}$	$2 imes 10^{-4}$
$a_{ m sl}^{s}~(B_{s}^{0} ightarrow D_{s}^{-}\mu^{+} u_{\mu})$	$33 imes 10^{-4}$ [35]	$10 imes 10^{-4}$	$7 imes 10^{-4}$	$3 imes 10^{-4}$
Charm				
$\Delta A_{CP} \ (D^0 \rightarrow K^+ K^-, \pi^+ \pi^-)$	$29 imes 10^{-5}$ [5]	17×10^{-5}	—	$3.0 imes10^{-5}$
$A_{\Gamma} \left(D^0 ightarrow K^+ K^-, \pi^+ \pi^- ight)$	$13 imes 10^{-5}$ [38]	$4.3 imes 10^{-5}$	—	$1.0 imes 10^{-5}$
$\Delta x \ (D^0 \rightarrow K^0_{ m s} \pi^+ \pi^-)$	18×10^{-5} [37]	$6.3 imes 10^{-5}$	$4.1 imes 10^{-5}$	$1.6 imes10^{-5}$
Rare Decays				
$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	$^{-}$) 71% [40, 41]	34%	—	10%
$S_{\mu\mu} \left(B^0_s ightarrow \mu^+ \mu^- ight)$		—	—	0.2
$A_{ m T}^{(2)}~(B^0 o K^{*0} e^+ e^-)$	0.10 [52]	0.060	0.043	0.016
$A_{\mathrm{T}}^{\mathrm{Im}}~(B^0 ightarrow K^{*0} e^+ e^-)$	0.10 [52]	0.060	0.043	0.016
${\cal A}^{ar \Delta \Gamma}_{\phi \gamma}(B^0_s o \phi \gamma)$	$^{+0.41}_{-0.44}$ [51]	0.124	0.083	0.033
$S_{\phi\gamma}(B^0_s o \phi\gamma)$	0.32 [51]	0.093	0.062	0.025
$\alpha_{\gamma}(\Lambda_b^0 \to \Lambda \gamma)$	$^{+0.17}_{-0.29}$ [53]	0.148	0.097	0.038
Lepton Universality Tests				
$R_K (B^+ \to K^+ \ell^+ \ell^-)$	0.044 [12]	0.025	0.017	0.007
$R_{K^*} \ (B^0 o K^{*0} \ell^+ \ell^-)$	0.10 [61]	0.031	0.021	0.008
$R(D^*) \ (B^0 o D^{*-} \ell^+ u_\ell)$	$0.026 \ [62, 64]$	0.007		0.002

RICH detectors at LHCb

Giovanni Cavallero

LHCb upgrades

- in order to achieve the required statistical uncertainties, the instantaneous luminosity (*i.e.* the pile-up) needs to be increased
- starting from Run 3 we have a shift of paradigm, removing the hardware level trigger and running the LHCb experiment with a triggerless readout system at 40 MHz

Requirements for the evolution of the LHCb RICH system

Keep the excellent Run 1 and 2 performance while increasing the instantaneous luminosity up to a pile-up of \sim 40!

RICH1 rings with 1 PV

RICH1 rings with 5 PVs

RICH1 rings with 10 PVs

Introduction of timing concept more and more relevant! (rings in blue matching search window for the input tracks)

https://doi.org/10.17863/CAM.78867

Radiators

LHCb RICH radiators

- fluorocarbon gases were chosen because of the relatively low chromatic dispersion
- C₄F₁₀: n = 1.0014 at 400 nm, gas vessel: $2 \times 3 \times 1 \text{ m}^3$
- CF₄: *n* = 1.0005 at 400 nm, gas vessel: 100 m³

Aerogel (n = 1.03 at 540 nm) was used for $p < 10 \,\mathrm{GeV}$: not optimal discrimination due to lower than expected signal to noise ratio (Rayleigh scattering producing backgrounds), absorption of C₄F₁₀ degrading the overall RICH1 performance \Rightarrow **abandoned after Run 1**

RICH detectors at LHCb

Giovanni Cavallero

Improvements related to radiators

The chromatic error depends on the convolution between the dispersion and the photon detector quantum efficiency (QE)

Radiators R&D

- fluorocarbon gases have large Global Warming Potential $GWP(C_4F_{10}) = 8500 \text{ CO}_2$, $GWP(CF_4) = 7000 \text{ CO}_2$ G. Hallewell's talk at RICH2022
- could replace CF₄ (n=1.0005) with CO₂ (n=1.0004): photon yield $(\propto 1 1/n^2)$ marginally lower, but worse chromaticity (from 0.34 to 0.53 mrad for MaPMT QE)
- intense R&D and studies at CERN to find alternatives to C_4F_{10} , matching its refractive index and allowing operations in the LHCb environment

Radiators R&D

- R&D on aerogel with improved clarity to extend the coverage to low momenta at hadron colliders
- very interesting early stages R&D on metamaterials: layers of dielectrics resulting in an effective and tunable refractive index
- possibility to tune emission angle as well to completely rethink the geometry of RICH detectors and make them compact

Nature Physics volume 14, pages 816-821 (2018)

Optical system

LHCb RICH mirrors

- high reflectivity (> 90% in the wavelengths of interest) to maximise the number of Cherenkov photons in the photon detector planes
- carbon fibre reinforced polymer substrates are used in RICH1 spherical mirrors to minimise the material budget in the acceptance: $\sim 1\%~X_0$ RICH1

26x2 (20x2) spherical (flat) mirror segments

Evolution of RICH1 optical system in the current Run 3 system

- curvature radius R increased of a factor $\sim \sqrt{2} \Rightarrow$ peak occupancy \sim halved, reduced $\sigma_{\rm pixel} \propto 1/R$
- emission point error from 0.61 mrad to 0.36 mrad
- extend overall gas volume of 100 mm $\Rightarrow +14\%$ Cherenkov photons

New mirrors, gas enclosure, quartz window

RICH detectors at LHCb

Giovanni Cavallero

Possible further evolutions of the optical system

- move the flat mirror in the acceptance: requires R&D on carbon fibre flat mirrors, light-weight supports and with good resistance to radiation
- emission point error can go down to \sim 0.1 mrad in RICH1 and from 0.32 to 0.05 mrad in RICH2
- further increase in spherical mirror curvature radius ⇒ reduced occupancy and decreased pixel error

RICH detectors at LHCb

Giovanni Cavallero

Photon detectors, electronics and DAQ

Photon detectors during Run 1 and 2

- Cherenkov radiation focused on Hybrid Photon Detectors (HPDs) plane
- $\bullet\,$ HPDs equipped with embedded frontend electronics working at $1\,\mathrm{MHz}$ readout
- photoelectron accelerated by a $-20\,\rm kV$ potential towards a silicon matrix of 1024 pixels
- band gap in Si is $3.6 \,\mathrm{eV} \Rightarrow \sim 5000 \, e$ -h pairs/photoelectron

RICH detectors at LHCb

Giovanni Cavallero

Photon detectors in Run 3

- removing the hardware level trigger in LHCb means that we have to readout the RICH detectors at 40 MHz ⇒ replace HPDs with Hamamatsu Multi-anode Photo-Multiplier Tubes with external readout
- R11265 and R12699 types, commercial candidates chosen given the excellent active area ($\sim 80\%$), good spatial granularity $O(10 \text{mm}^2)$, and excellent response to detection rates up to $O(100 \text{ MHz/cm}^2)$
- impressive quantum efficiency of 40% at 300 nm in average!

RICH detectors at LHCb

Giovanni Cavallero

Photon detection planes in Run 3

RICH detectors at LHCb

Giovanni Cavallero

First rings in Run 3 at 13.6 TeV

Photon detectors and electronics for further upgrades

- in order to run with a further increase in the pile-up (from 5 to 40), the reduction of the pixel size and the introduction of the time coordinate is necessary: fast ($\mathcal{O}(100)$ ps) photon detectors and fast electronics
- detection rates up to ${\cal O}(1~GHz/cm^2),$ corresponding to a neutron fluence (10y) of $6\cdot10^{13}~n_{eq}~cm^{-2}$
- can exploit the prompt production of Cherenkov radiation doi:10.17863/CAM.45822

- need for very precise clock distribution across tens of km from LHC machine and accurate length+quality of data distribution optical fibres
- need for operationally feasible calibration strategies to achieve a stable sub-ns time alignment across an area of $\sim 4~m^2$

RICH detectors at LHCb

Giovanni Cavallero

Candidate photon detectors for future upgrades: SiPMs

- SiPMs have several advantages: extremely fine granularity, resiliance to magnetic fields, high photon detection efficiency, green-enhanced quantum efficiency, good timing
- but important drawbacks: dark count rates after irradiation at $10^{13} n_{eq} \text{ cm}^{-2}$ (~ 1y = 6e + 6 s ofdata taking) are larger than expected signal rate
- could be compensated by annealing and cryogenics operations: but very challenging from the operational point of view and requiring R&D on a possible interface between the photon detectors environment and the gas radiator envelope

Hamamatsu S14161-3050HS-08

Candidate photon detectors for future upgrades: MCP-based

Extremely good time resolution < 100 ps, custom pixelisation tailored for individual applications, **but important drawbacks** related to lifetime and rate capability: R&D ongoing

Conventional MCPs

Large Area Picosecond PhotoDetector

MCP-HPD [JINST 13 C12005 2018]

Performances in a nutshell

[CERN-LHCC-2021-012]

Radiator	C ₄ F ₁₀			CF ₄		
Detector version	RICH1 HPD	RICH1 MaPMT	RICH1 SiPM+optics	RICH2 HPD	RICH2 MaPMT	RICH2 SiPM+optics
Photon yield	30	60	40-30	18	30	30-20
Single photon errors [mrad]						
Chromatic Pixel Emission point	0.84 0.99 0.61	0.52 0.50 0.36	0.11 0.15 0.12	0.48 0.35 0.32	0.34 0.22 0.32	0.10 0.07 0.05
Overall	1.66	0.81	0.22	0.62	0.52	0.13

29/30

Conclusions

- the LHCb RICH detectors have been upgraded to keep the excellent Run 1 and 2 performance with a five-fold increase in luminosity, a first introduction of the timing concept and with improvements in the overall Chrenkov angle resolution: **now operational**
- a first enhancement of the RICH system is foreseen between Run 3 and Run 4 with fast frontend electronics F. Keizer talk at RICH2022
- R&D ongoing on optics, radiators, photon detectors, fast electronics, mechanics to achieve the ultimate performance of a RICH detector in a hadronic enviroment, to allow operations at the High-Lumi LHC with a pile-up in LHCb of 40 interactions per bunch crossing

