

Performance studies and future opportunities of

THE TORCH DETECTOR

Maarten van Dijk on behalf of the TORCH collaboration 27-10-2022

The TORCH detector

- <u>TORCH</u>: Time Of internally Reflected CHerenkov light
 - Also see this talk of L.M. Garcia Martin for details on reconstruction Vertex Locator
 - DIRC-like detector
 - Similar to RICH but with a solid quartz radiator
- Part of <u>LHCb Upgrade II</u>
 - Existing RICH has ~10 GeV/c threshold for kaons (~20 GeV/c for protons)
 - TORCH will complement the existing PID system (RICH1, RICH2) in the low momentum regime (2-10 GeV/c)
- Principle of operation
 - Required inputs are track angle, position and momentum
 - High precision timing of particle at known momentum provides PID
 - ΔTOF(π-K) = 37.5ps at 10 GeV/c
 - Target (three sigma separation) is ~15ps / track

Principle of the TORCH detector

- Cherenkov light from radiator plate undergoes total internal reflection
 - Project light onto photodetector with focusing optics
 - Infer Cherenkov angle per photon to correct for chromaticity
 - Combine time of detected photons into track timestamp
- Single photon time resolution
 - Expect to detect ~30 photons / track
 - Required single-photon resolution is ~70ps
 - Budget
 - 50ps (electronics)
 - 50ps (photon reconstruction)

A prototype of the TORCH detector

- A prototype of the TORCH detector has been developed: ProtoTORCH
- Optics sourced from Nikon
 - Full-width, half-height radiator
 - Full-sized focusing optics
 - Glued with Pactan 8030

Performance studies and future opportunities of the TORCH detector

ProtoTORCH Testbeam @ T9 (November 2018)

M. van Dijk 27.10.2022

Performance studies and future opportunities of the TORCH detector

ProtoTORCH Testbeam @ T9

- ProtoTORCH was equipped with two MCP-PMTs for this testbeam
 - Time reference from timing stations inserted at HPTDC level
- 8 GeV/c beam
 - Combination of Time of Flight and Threshold Cherenkov counters used for PID
 - (47.3 ± 1.5)% pions and (52.7 ± 1.5)% protons
- Exposed to beam at six positions

Collected data – Space & time

Performance studies and future opportunities of the TORCH detector

Testbeam data processing

- Integral Non-Linearity
 - Not all time bins in HPTDC are equally sized
 - Can be mapped out from testbeam data as clock and data are not correlated
- Time walk is corrected for
 - Mapped out for electronics using data-driven method
- Clustering algorithm applied
 - Combine position and time information for neighboring pixels sufficiently close in time
- No charge to width calibration implemented yet
 - Expected to be operational for analysis of 2022 data

Testbeam – Time resolution

- Determine time resolution by fitting time distribution for observed peaks
 - Resolution derived from sigma of fitted Crystal Ball
- For beam position close to MCP-PMT, goal of 70ps time resolution is reached
 - Time resolution degrades as distance from MCP-PMT increases, indicating effect from reconstruction
 - Reconstruction strongly impacted by small readout effects: small errors in reconstruction of Cherenkov angle scale with photon path length
 - Improving calibrations further should significantly improve this issue

Time resolution – further analysis

- Time resolution can be broken down further
 - Analysed as a function of reconstructed propagation time per photon and number of hits per cluster
- Three factors contribute to time resolution
 - Propagation time in quartz (linear with path length)
 - MCP resolution (constant)
 - Number of hits in cluster ($\sqrt{N_{hits}}$)
- Further improvement expected
 - Better calibration will impact all parameters
 - Upcoming testbeam with full complement of PMTs

Contribution	Fitted values (ps)		Target values (ng)	
	Pion	Proton	Target values (ps)	
$\sigma_{ m prop}(t_p)$	$(8.3 \pm 0.7) \times 10^{-3} \times t_p$	$(7.6 \pm 0.5) \times 10^{-3} \times t_p$	$(3.75 \pm 0.8) \times 10^{-3} \times t_p$	
$\sigma_{ m MCP}$	34.5 ± 8.6	31.0 ± 7.6	33	
$\sigma_{ m RO}(N_{ m Hits})$	$(96.2\pm6.7)/\sqrt{N_{ m Hits}}$	$(95.0\pm 6.0)/\sqrt{N_{ m Hits}}$	$60/\sqrt{N_{ m Hits}}$	

Testbeam – photon counting

- Counting efficiency of incoming light is critical
 - Second figure of merit
 - Compare with Geant₄ simulation to benchmark
- Light yield somewhat lower than expected
 - Information on no-light bin will improve with more PMTs
 - Expected to improve further with calibration

Position	Mean $N_{\rm photons}$		Mean(Data)/Mean(Simulation)	
	Data	Simulation	All	Excluding $N_{\rm photons}=0$
1	2.605 ± 0.007	3.586 ± 0.020	0.726 ± 0.004	0.843 ± 0.005
3	1.419 ± 0.005	2.016 ± 0.029	0.704 ± 0.010	0.824 ± 0.010
4	0.937 ± 0.004	1.454 ± 0.024	0.644 ± 0.011	0.823 ± 0.008
5	0.677 ± 0.002	1.127 ± 0.022	0.600 ± 0.012	0.820 ± 0.009

Upcoming testbeam

- Testbeam planned at T9 CERN East Area
 - 31 October 28 November
 - Area newly renovated
- Full instrumented detector
 - 10 MCP-PMTs with 8x64 channels
 - Fully equipped with NINO + HPTDC
 - Calibration of boards ongoing in dedicated test setup
- New DAQ for streamlined data taking, new and improved[™] data analysis under preparation
- High expectations for fresh data: improved resolution and photon counts
 - Particle identification using TORCH should be within reach

The future of TORCH?

- Design explored in the context of FCC-ee
- Follow current TORCH design and find where it will need to deviate
 - 1cm thick quartz plates as radiator
 - Placement between tracker and ECAL
 - R=180cm, radiator length 220cm
 - R~2.1m (CLD), R<2m (IDEA)
 - Challenge is K/ π separation, aim for 3σ
 - Momentum range as TORCH: up to 10 GeV/c
 - Track position, angles and momentum are assumed to be known

12.0

10.6

12.9

11.4

Overall height [m]

Overall length [m

Particle separation in time – basics

• Time difference dictated by mass of relevant particles

$$\Delta t_{K-\pi} \approx \frac{x}{c} \frac{1}{2p^2} [m_K^2 - m_\pi^2]$$

- *x* is the path over which the particles separate
- *m* is relevant particle mass, *p* is momentum
- Fill out constants, evaluate at p=10 GeV/c, x = 1.8m: $\Delta TOF_{K-\pi}$ =6.7ps
- Additional separation from time of propagation of photons in quartz
 - Results from difference in Cherenkov angle due to mass difference, roughly 1 mrad
 - Separation factors in on per-photon basis: over 3.5m (typical here): $\Delta TOP_{K-\pi}$ ~7.3ps
 - Effects stack: $\Delta TOF_{K-\pi} + \Delta TOP_{K-\pi} = 14.0$ ps
- Require 30 separation (3.3ps), assume 30 photons: 25.6ps per photon
 - This can be split evenly between reconstruction and (detector + electronics): 18.1ps

Particle separation in time – basics

- Errors accumulate along the calculation of the track timing
 - Basic structure of reconstruction, starting from known track position, angle and momentum
 - 1. Determine photon path through optics and derive path length
 - 2. Measure Cherenkov angle to correct chromaticity
 - 3. Combine individual photons into track time
- Emission point (along path in quartz) matters when aiming for 3.3ps time resolution
 - 1cm (a) c = 30 ops: interpreted as flat smearing (scale with $\sqrt{12}$) gives an 8.7ps contribution
 - Reconstruction of emission point is required
 - Note that this also means a new solution for the optics is required –focusing makes reconstructing the emission point impossible

Angular precision

- Angular precision is the key factor driving this design
 - Granularity of photodetector determines angular precision
 - Angular uncertainty then sets limit on reconstruction of Cherenkov angle
 - 1 mrad error on θ_c gives ~20ps uncertainty per meter of path in quartz
 - Added TOP separation not enough to cancel this out
 - Require ~0.1 mrad precision on angle
 - Note this also includes the tracking input
- Coulomb scattering smears the angles of the detected photons
 - 1cm of quartz gives 0.5-1mrad of multiple Coulomb scattering
 - This would need to be corrected for in the reconstruction
 - Complicated problem to solve assess first in simulation?

Conclusions

- TORCH is a solid Cherenkov-based PID detector designed to complement existing LHCb PID
 - Adds positive $\pi\text{-}K$ separation (2-10 GeV/c) and p-K separation (2-20 GeV/c)
 - Part of the proposed Upgrade-II of LHCb
- Testbeam data analysis is nearly complete
 - Single photon time resolution 70-110ps, photon counting ~82% of expectation
 - Preparation for next testbeam preparation ongoing (November 2022)
 - High expectations: TORCH-based particle-ID to show full scope of detector
- Design for application of TORCH in barrel geometry explored
 - New solution for optics required (cannot reconstruct emission point with focusing optics)
 - Detector requirements: ~25.6ps single photon resolution, 0.1mrad reconstruction of photon angles

The TORCH microchannel plate PMT

- Requirement on angular resolution sets detector pixel size
 - Detectors with 53x53mm² active area
 - 1 mrad requirement on both angles translates to 128x8 pixels
- Charge spread over multiple pixels
 - Pixels grouped per 8 in horizontal direction
 - Required resolution achieved with 64x8 pixels
- MCP-PMT detector developed by Photek
 - 10 units have been delivered for use in prototype

Detector readout for the TORCH prototype

- Readout based on <u>NINO</u> and <u>HPTDC</u> chips
 - Originally developed for ALICE TOF
- Combination of NINO and HPTDC allows to time-tag leading edge and measure time over threshold
- Dedicated setup has been developed for board calibration
- Future versions based on <u>picoTDC</u> and <u>fastIC</u> under study

Testbeam – time resolution per track

- Time resolution per track has been studied
 - Only low statistics available (two photodetectors)

- Time resolution improves with more photons
 - But not as fast as expected
 - Calibration is key, as before

Quantum efficiency in testbeam

- Degraded performance of MCP A (left) relative to MCP B (right)
 - MCP A has ~half the efficiency of MCP B (integrated over the spectrum)

Propagation time reconstruction

- Large impact from length of path on reconstruction
 - Limits reconstruction
- The resolution in the Cherenkov angle is tied to the pixel size (fine direction) of the MCP-PMT
 - Uncertainty on Cherenkov angle dictates uncertainty on reconstruction of group refractive index
 - Path length functions as a lever arm
- As path length increases, the limited resolution on the Cherenkov angle factors linearly into the time resolution

