Introduction to Quantum Dots

Quantum dots (QDs) are semiconductor particles a few nanometres in size, having optical and electronic properties that differ from those of larger particles as a result of quantum mechanics.

Structural characterization

Both CsPbBr₃ and Zn-Cd-S quantum dots are precipitated in the glass, and the distribution is uniform.

The average grain size is 20nm and 15nm, respectively, and the crystallization rate is 4.92% and 1.29%.

Photoluminescence (PL)

Continuously adjustable emission peak

1. the thermal heating scheme—widely adjusted

2. the excitation wavelength-fine-tuned

Sample	QDs	λ(nm)	τ
Co- doped	CsPbBr ₃	488	13.9ns
CPB	CsPbBr ₃	493	17.2ns
Co- doped	Zn-Cd-S	626	5.71µs
ZnCdS	Zn-Cd-S	634	5.15µs

X-rays excited radioluminescence (XEL)

The tunable dual-band emissions can be also achieved under the Xrays excitation.

Radiation damage can be reduced by heating Good thermal stability

Bimodal peak ratio

The sensitivity of exponential fitting is higher

Conclusions

- **The CsPbBr**₃ and Zn-Cd-S QDs can be simultaneously grown in borosilicate glass
- When excited, these exists an ET between the biphasic QDs due to reabsorption or direct exciton exchange.
- Owing to the different volume fraction or pump-energy harvesting ability of the biphasic QDs, the green to red emission ratio and thus the apparent color can be broadly adjusted.
- > The tunable dual-band emissions can be also achieved under the X-rays excitation.
- Although the XEL weakening occurs possibly due to the X-rays induced photodegradation or defects, such adverse effect can be readily wiped off by post-thermal-annealing.
- A self-calibrated X-rays dosimeter with a good thermal stability is constructed on the fluorescence intensity ratio of the unique dual-band emissions.