

Enhanced photoluminescence quantum yield of Ce³⁺-doped aluminium-silicate glasses for scintillation application

Reporter: Wu Tao Tutor: Tang Gao China Jliang Univeristy

1. Absorption and PL-PLE spectra

- The cut-off wavelength of the matrix glass is about 250 nm.
- The emission peak, excitation peak and the cut-off wavelength show a red-shift with the increase of Ce³⁺ concentration, because the energy absorbed by the electronic transition gradually becomes weaker.
- PL decay times decrease with further increase of Ce^{3+} ions concentration, which are the typical values for the 5d \rightarrow 4f transition of Ce^{3+} ions.

2. PL QY

Glass composition	Density(g/cm ³)	PL QY (%)
Ce ³⁺ -Li ₃ PO ₄ -B ₂ O ₃	~	15.3
$0.5Ce^{3+}-55B_2O_3-20CaO-10Al_2O_3-15La_2O_3$	~	42
0.1Ce ³⁺ -33.3Li ₂ O-66.7SiO ₂	~	33
$\begin{array}{c} 0.7 \text{Ce}^{3+}\text{-}34 \text{Li}_2\text{O}\text{-}5\text{MgO}\text{-}10\text{Al}_2\text{O}_3\text{-}51\text{SiO}_2\\ \text{(Commercial GS20)} \end{array}$	2.5	~90
0.1Ce ³⁺ -40BaO-60B ₂ O ₃	~3.75	40
YAG: Ce ³⁺ (as a standard sample)	~	87.22
0.3Ce ³⁺ -doped 20Gd ₂ O ₃ -20Al ₂ O ₃ -60SiO ₂	~4.2	28.32
0.7Ce ³⁺ -doped 20Gd ₂ O ₃ -20Al ₂ O ₃ -60SiO ₂	~4.2	38.90
1.1Ce ³⁺ -doped 20Gd ₂ O ₃ -20Al ₂ O ₃ -60SiO ₂	~4.2	50.50
1.5Ce ³⁺ -doped 20Gd ₂ O ₃ -20Al ₂ O ₃ -60SiO ₂	~4.2	48.98
1.9Ce ³⁺ -doped 20Gd ₂ O ₃ -20Al ₂ O ₃ -60SiO ₂	~4.2	38.32

$$LY = \frac{E}{\beta E_g} * S * Q$$

- LY—light yield of a scintillator E—deposited energy of ionizing radiation β —constant parameter dependent on host material E_g—band gap energy S—energy migration Q—photoluminescence quantum yield
 - The PL QYs of GAS: xCe³⁺ glasses first increase and then decrease with the increase of Ce³⁺ concentration, and reach the maximum when x=1.1 mol%.
 - When the distance among Ce³⁺ ions exceed a certain threshold, the interaction becomes dominant, resulting in concentration quenching.

650

600

3. XEL and thermal quenching

- The emission peak positions of the glasses are different in XEL (390-400 nm) and PL (420-440 nm) spectra due to the difference of the luminescent mechanism and excitation energy.
- The GAS:1.1Ce³⁺ glass shows the highest intensity which is approximately 23.86% that of BGO crystal.
- At 520 K, the luminescent intensity of GAS:1.1Ce³⁺ glass is 59.67% of that of room temperature (300 K), and the thermal quenching in XEL is estimated to be all about 0.14 eV.

4. Gamma-ray scintillation

- The light yield of the GAS: 1.1Ce³⁺ glass is calculated to be about 1206 ph/MeV with an energy resolution of 22.98% at 662keV.
- Under the same measurement conditions, the number of photons of glasses detected by SiPM is about 1/4-1/3 of BGO crystal. This result is consistent with change in XEL integral intensity.
- The decay time of the glasses consists of fast and slow components, which are between 395-285 ns and 2332-1382 ns. The fast component originates from the direct capture of electrons by Ce³⁺ ions and the slow component originates from the repeated capture of electrons by defect levels.

Thank you!