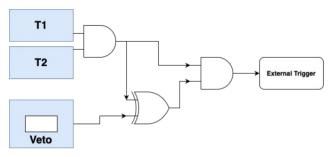
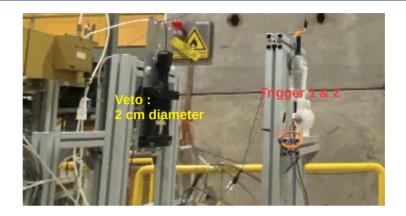

Introduction

- Dual-readout calorimeter
 - Two components of hadron showers.
 - · em component.
 - non-em component.
 - Responses of calorimeter to these components are not same $(e/h \neq 1)^{\frac{5}{3}}$
 - cerenkov light almost exclusively is produced by em component
 - Dual-readout method
 - measure fem event by event.
- 2022 August test beam
 - We tested Dual-readout calorimeter in CERN north area in this August
 - Our module has two modules
 - module 1: 3 PMT Towers & 1 MCP-PMT Tower
 - module 2: 8 PMT Towers & 1 SiPM Tower
 - Our module require 426 channels.

$$S = E \left[f_{\text{em}} + \frac{1}{(e/h)_{\text{S}}} (1 - f_{\text{em}}) \right]$$

$$Q = E \left[f_{\text{em}} + \frac{1}{(e/h)_{\text{Q}}} (1 - f_{\text{em}}) \right]$$

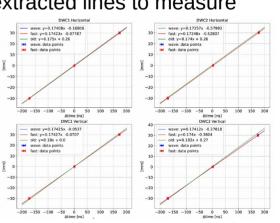

$$e.g. \text{If} \quad e/h = 1.3 \text{ (S)}, 4.7 \text{ (Q)}$$


$$\frac{Q}{S} = \frac{f_{\text{em}} + 0.21 (1 - f_{\text{em}})}{f_{\text{em}} + 0.77 (1 - f_{\text{em}})}$$

$$E = \frac{S - \chi Q}{1 - \chi}$$
with
$$\chi = \frac{1 - (h/e)_{\text{S}}}{1 - (h/e)_{\text{Q}}}$$

Anciliary detector

Trigger



Delay wire chamber

- Delay wire chamber (DWC) is gas chamber that used on the SPS extracted lines to measure beam profiles.

Calibration

- 3 channel (L/U, C, R/D) that goes to known position for calibration.
 - Left/Up (L/U): (-30, 30) mm
 - Center (C): (0, 0) mm
 - Right/Down (L/U): (30, -30) mm

Ancillary detector

Pre-shower

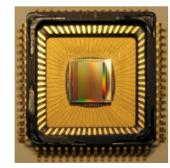
- Identify the particles from beam.
 - 1 MIP: pions & muon
 - more than 3 MIP : positron
- 5.1 mm(~1X0) thickness of lead plate is attached in front of scintillator.
- e* 20 GeV, Run 570-573, DRC TB Aug. 2022

 ****The control of the c

To detect whether shower leakage is exist.

Muon counter

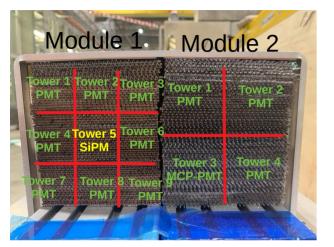
 To detect muon from beam or shower.

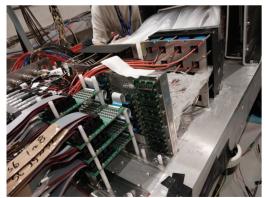

DAQ & TCB boards

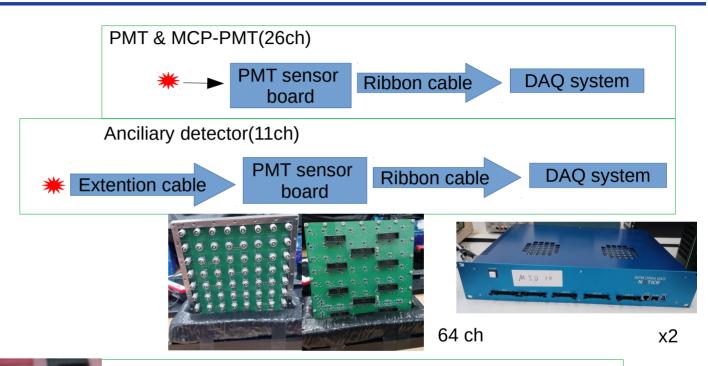
- DAQ board
 - One board can cover 32 channels.
 - Use DRS4 chip.
 - Use 16 pin Ribbon cable
- TCB board
 - Control the setting value of DAQ boards and the trigger system.
 - Connect DAQ boards with TCP/IP cable, cover 40 ch DAQ.

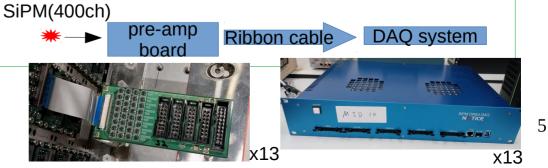
All boards connected with PC using USB3 line

16 pin ribbon cable




DRS4 chip


	Generic PMT	MCP-PMT	Auxilary detector	SiPM	
channels	22	4	11	400	
DAQ		2		13	


Readout system

