

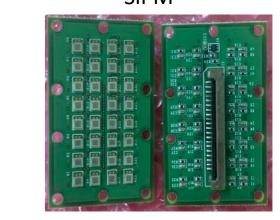
The process of assembly

for the module of the dual-readout calorimeter

Department of physics, Yonsei University Guk Cho(Supervisor : H.D. Yoo)

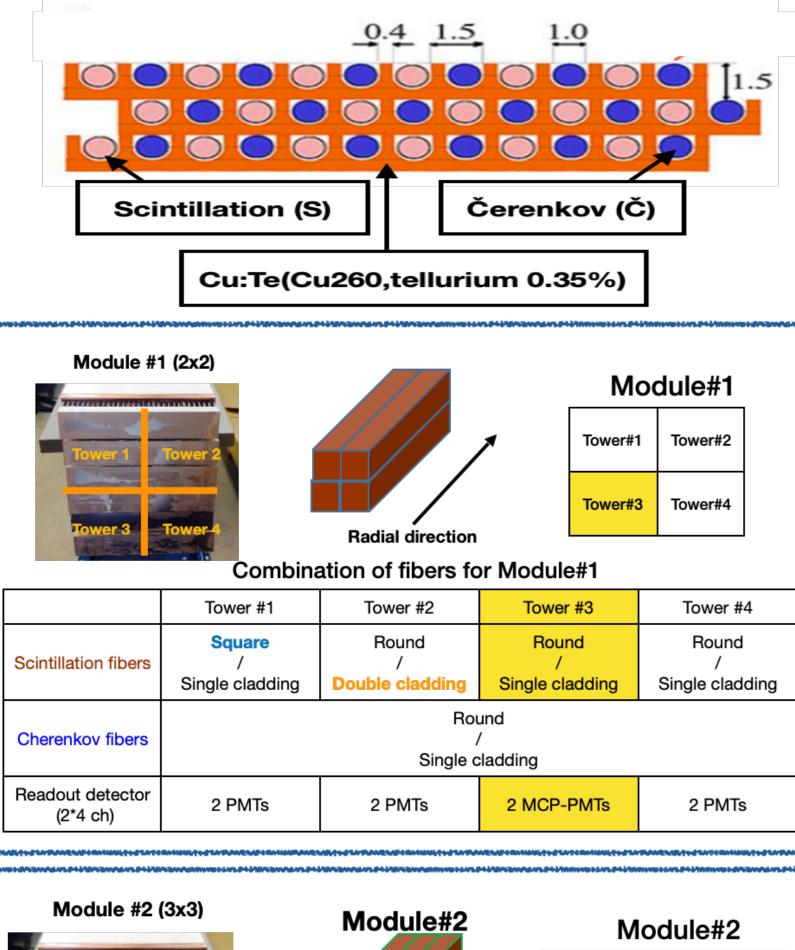
Dual-readout Calorimeter

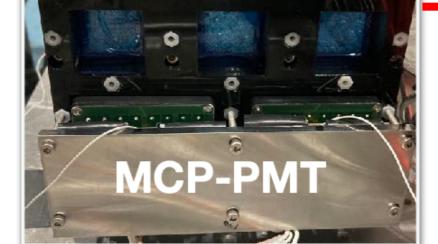
- Dual-readout calorimeter has been proposed in IDA detector conceptual report(CDR) for future e^+e^- collider.
- Dual-readout calorimeter may offer high-quality energy measurement for both EM particles and hadrons.
- Deposited energy of shower components is measured in scintillating and čerenkov fibers.
- The detector uses two different channels; Čerenkov fibers respond to mainly EM particles only, and scintillating fibers respond to both EM & hadronic particles.


Readout System Installation


- We used 3 types of photomultiplier for checking the characteristic of dualreadout calorimeter
 - Generic PMT (22 ch), MCP-PMT (4 ch), SiPM (400 ch)

Generic PMT





Dual-Readout Calorimeter

Cross sectional view of module

- All fibers are installed on stacked copper plates, called tower structures.
- Copper plate: grooving with a milling machine
- Optical fiber
- 1) Čerenkov fiber: round
 - shaped with single cladding
- 2) Scintillating fiber: roundshaped with single cladding & double cladding, squareshaped with single cladding
 Module 1
 - 4 readout towers
 - tower 3 is connected to MCP-PMT
- Module 2

 We stacked the PMTs layer by layer to compose the readout system

DAQ Connection

- We made mapping for cable connection with DAQ team
- Also, auxiliary detectors are connected to PMT sensor board with LEMO cable

	mid1 ch1	mid1 ch3	mid1 ch5	mid1 ch7	mid1 ch9	mid1 ch11	mid1 ch13	mid1 ch15
mid 1	M1_T1_S	M1_T2_S	M1_T4_S	M1_T3_S MCP(-)	M1_T1_C	M1_T2_C	M1_T4_C	M1_T3_C MCP(-)
	mid1 ch2	mid1 ch4	mid1 ch6	mid1 ch8	mid1 ch10	mid1 ch12	mid1 ch14	mid1 ch16
						PS	тс	Muon
	mid1 ch17 DWC1 (digital1) right	mid1 ch19 DWC1 (digital2) left	mid1 ch21 DWC1 (Age 1)				mid1 ch29 DWC2 (digital3) up	mid1 ch31 DWC2 (digital4) down
	mid1 ch18	mid1 ch20	mid1 ch22	mid1 ch24	mid1 ch26	mid1 ch28	mid1 ch30	mid1 ch32
mid 2	mid2 ch1	mid2 ch3	mid2 ch5	mid2 ch7	mid2 ch9	mid2 ch11	mid2 ch13	mid2 ch15
	M2_T1_S	M2_T2_S	M2_T3_S	M2_T4_S	M2_T1_C	M2_T2_C	M2_T3_C	M2_T4_C
	mid2 ch2	mid2 ch4	mid2 ch6	mid2 ch8	mid2 ch10	mid2 ch12	mid2 ch14	mid2 ch16
	M2_T6_S	M2_T7_S	M2_T8_S	M2_T9_S	M2_T6_C	M2_T7_C	M2_T8_C	M2_T9_C
	mid2 ch17	mid2 ch19	mid2 ch21	mid2 ch23	mid2 ch25	mid2 ch27	mid2 ch29	mid2 ch31
	M1_T3_S MCP(+)				M1_T3_C MCP(+)			
	mid2 ch18	mid2 ch20	mid2 ch22	mid2 ch24	mid2 ch26	mid2 ch28	mid2 ch30	mid2 ch32

Preamp board mapping Down steam s				
S5-mid15		C5-mid7		
S4-mid14	S6-mid10	C4-mid6		
S3-mid13	SC-mid11	C3-mid5		
S2-mid12	C6-mid8	C2-mid4		
S1-mid9		C1-mid3		

pwer 7 Tower 8	Radial direction Combination of fibers for Modu	Tower#7	Tower#8	Tower#9
		Tower #5		
Scintillation fibers		Round / Single cladding		
Cherenkov fibers		Round / Single cladding		
Readout detector (400+16 ch)		400 SiPMs		

- 9 readout towers
- central tower is connected to 416 SiPM ch
- Other towers are equipped with generic PMT

Procedure of Assembly

Tower#3

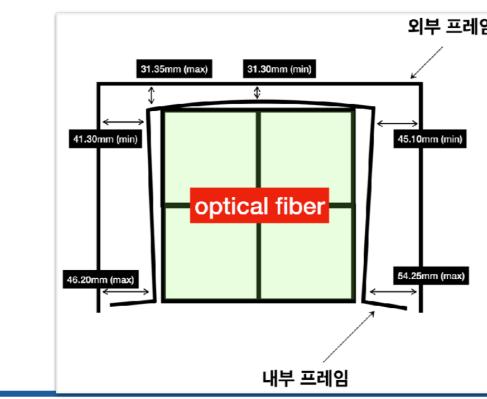
Tower#6

Tower#2

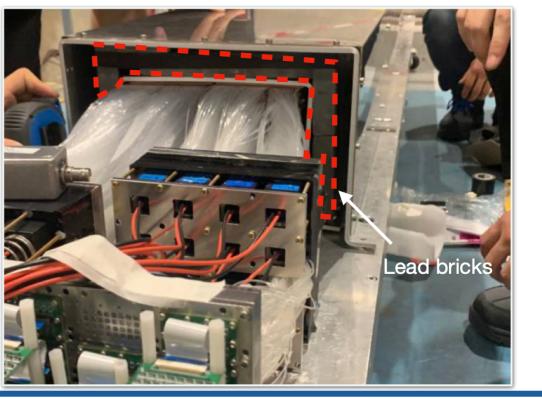
Tower#5

- 3 steps to build dual-readout calorimeter
- All steps are performed at Yonsei university
- Installation readout system & reflector is disassembled after working test and reassembled in H8 at CERN

Step 2.



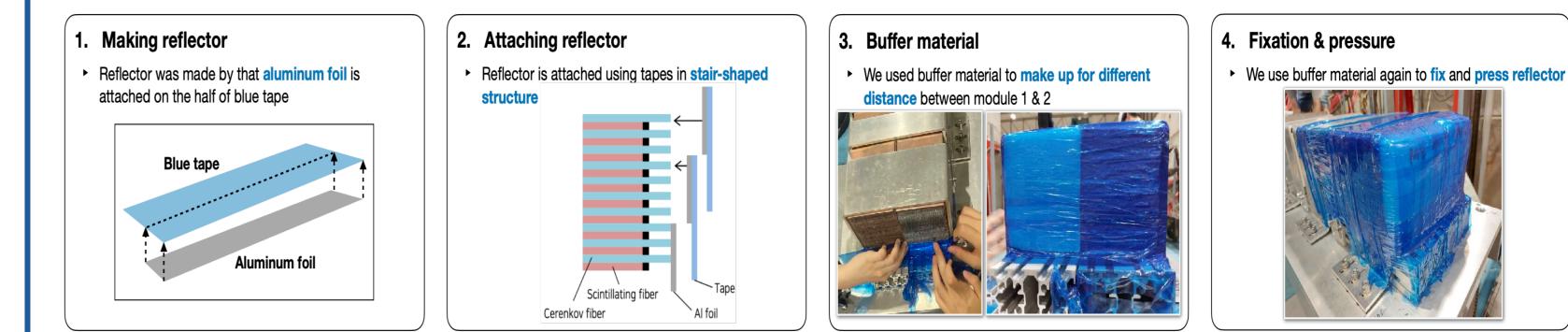

<section-header>


<section-header><section-header>

Shielding PMT

We put lead bricks in dark case to protect PMTs from beam

Reflector


- Čerenkov light is nearly exactly prompt, so reflected light retains good time information.
- Čerenkov light also has no signal penalty in the longer path length of the reflected light because attenuation length is long.

Light	Scintillating light	Čerenkov light
Quantity	Bright	Not bright
Speed	Slow (~2 ns)	Fast (~0 ns)
Attenuation lengths	Small (~3m)	Long (6~10m)

Scintillating fiber: block the light Čerenkov fiber: reflect the light which gives the depth of light in the module

- Fibers are put in the grooves of the copper plate
- **Taping** to block the escaping fibers
- We used 3d-printed bundle case
 Fiber bundle of
- each tower is glued by **epoxy**
- All readout systems are installed on towers & connected to the DAQ system
- Aluminum foil is a good material to reflect čerenkov light
- Procedure of aluminum foil reflector

Conclusions & Next Step

- Dual-readout calorimeter is a novel, innovative, possibly more cost-effective design for the future collider.
- We **built** 2 dual-readout calorimeter modules & **tested** them in August at CERN
- The first importance is optical contact between fiber and readout system

• Shielding readout system is the second importance