Cluster Counting Algorithm Based on Machine Learning

Zhefei Tian¹, Guang Zhao², Shuiting Xin², Zhenyu Zhang¹, Linghui Wu²

¹Wuhan University, China ²Institute of High Energy Physics, China

Introduction

PID Technique

• The prior physics objective of CEPC is precise Higgs measurement, which requires powerful PID, better than $2\sigma \pi/K$ separation at p < 20 GeV[1].

Results

- Using the dN/dx technique instead of the dE/dx, we can have better PID[2].
 - dE/dx: Energy loss per unit length, Landau distribution, large fluctuation.
 - dN/dx: Number of primary ionization clusters per unit length, Poisson distribution, small fluctuation.
- Measure the number of primary ionization clusters $(N_p) \Rightarrow \text{Cluster}$ counting algorithm.

Cluster Counting Algorithm

• Cluster counting algorithm: Determine the $N_{\rm p}$ from the induced current waveform.

N_p Determination Algorithm with CNN

- N_p **Determination Algorithm**: Determine N_p from detected times in peak finding.
- A regression problem to predict $N_{\rm p}$.
- 1D data series \Rightarrow suitable for 1D-CNN model.

Neutral Network Structure

- Both primary and secondary ionizations contribute peaks on the waveform. What we need is the number of primary ionization clusters.
- Two steps: **Peak finding algorithm** and N_p determination algorithm.
- Machine Learning with **TensorFlow** and **Keras**.

Peak Finding Algorithm with LSTM

- **Peak Finding Algorithm**: Find all ionization peaks from waveforms.
- A classification problem on slicing windows (peak candidates) samples.
- Time-sequence data \Rightarrow suitable for LSTM model.

Neutral Network Structure

- Main block: Long Short-Term Memory (LSTM), a special kind of Recurrent Neutral Network (RNN).
- Main block: Convolutional Neural Network (CNN).

Results

- Single cell resolution $\sim 22.8\%$ (close to truth 22.3%).
- Very good Gaussian distribution of prediction.

Summary and conclusions

• A two-step cluster counting algorithm with Machine Learning is developed.

• The algorithm is able to achieve a resolution close to the truth level, which is better than the algorithm based on derivatives. • NEXT TO DO: Make the full evaluation of the algorithm and apply the algorithm to the experimental data.

Ref

- CEPC Study Group, [arXiv:1811.10545 [hep-ex]]. $\left[1\right]$
- Walenta, A. H., *IEEE Trans. Nucl. Sci.* **26** (1979) 73-80. 2

Contact

Zhefei Tian (Wuhan University) E-mail: tianzhefei@whu.edu.cn

The 2022 International Workshop on the High Energy Circular Electron-Positron Collider