Introduction

- PID with a drift chamber is a key feature for the 4th conceptual detector of CEPC.
- PID technique:
 - ${\rm d}E/{\rm d}x$: Energy loss per unit length, Landau distribution, large fluctuation.
 - ${\rm d}N/{\rm d}x$: Number of primary ionization clusters per unit length, Poisson distribution, small fluctuation.
- An improved PID method: $N_{\rm p}(\#\ {\rm of\ primary\ ionization\ clusters})\ {\rm measurement} {\rightarrow}\ {\rm d}N/{\rm d}x\ {\rm technique}$

Cluster Counting Algorithm

 Cluster counting: Cluster counting algorithm is to find the # of clusters from the waveform.

- Two steps: Peak finding and N_p determination.
- Machine learning can use full information of the waveform.
- ML tools: TensorFlow, Keras, etc.

The number of primary ionization clusters (N_p)

Peak Finding Algorithm

Peak Finding: find all ionization peaks from current waveform.

- A classification problem to classify signal and background in the waveform.
- The waveform is time sequence data.

RNN (Recurrent Neural Network) LSTM (Long Short-Term Memory)

- With feedback loops, RNN has "memory". LSTM is a special kind of RNN.
- Well-suited to classifying based on time sequence data.

Peak Finding Results

Note: ROC curve is frequently used for evaluating the performance of binary classification algorithms. ROC curve with larger area under-curve (AUC) is better.

$N_{\rm p}$ Determination Algorithm

 $N_{
m cluster}$ determination: Determine the # of clusters according to the ionization peaks found by peak finding algorithm.

- A regression problem to predict # of clusters.
- The features are detected time, and the labels are # of clusters.

CNN (Convolutional Neural Network)

- Extracting features form local input patches.
- 1D CNN can handle sequence data.

$N_{\rm p}$ Determination Results and Summary

Model predicted distribution and true distribution of # clusters

- Single cell resolution(σ/μ) $\sim 22.8\%$ (22.3% in truth).
- Very good Gaussian distribution.
- The relative error is quite similar to the truth value, which implies stable efficiency.

Summary

- A two-step cluster counting algorithm with Machine Learning is developed.
- The algorithm is able to achieve a resolution close to the truth level, which is better than the algorithm based on derivatives.
- NEXT TO DO: Make the full evaluation of the algorithm and apply the algorithm to the experimental data.