

中國科學院為能物記研究所 Institute of High Energy Physics Chinese Academy of Sciences

Jet Charge at CEPC

Hanhua Cui Manqi Ruan cuihanhua@ihep.ac.cn

The 2022 International Workshop on the High Energy Circular Electron Positron Collider October 28, 2022

Outline

- Jet Charge Introduction & CEPC Samples
- Two Methods & Dependences
- **★** (Leading Particle Method v.s. Weighted Charge Method)
- Jet Charge Performance Comparison
- Conclusion

Outline

- Jet Charge Introduction & CEPC Samples
- Two Methods & Dependences
- **★** (Leading Particle Method v.s. Weighted Charge Method)
- Jet Charge Performance Comparison
- Conclusion

Jet charge experiments & methods

	Experiments	Methods
LEP SLC	17 (0.6) million Z decays at LEP (SLC) Z pole	prompt lepton weighted jet and vtx charge Kaon
BABAR	integrated luminosity of 425.7 fb ⁻¹ , Y (4S) resonance.	category based method with NN
Belle2	integrated luminosity of 62.8 fb ⁻¹ , Y(4S) resonance	category based method & DNN
LHCb	integrated luminosity of 3 fb ⁻¹ , $\sqrt{s} = 8$ TeV	OS(e, μ, K, charm, Q _{vtx}) Taggers SS(SSπ, SSp, SSK) Taggers
ATLAS CMS	integrated luminosity of 14.3(19.7) fb ⁻¹ , $\sqrt{s} = 8$ TeV	pT weighted charge method
CEPC	integrated luminosity of 100 ab ⁻¹ , Z pole	leading particle method - e, μ, Κ, π, p weighted jet charge (for Bs: OS SSK)

CEPC Z pole operation & flavor physics potential

	Operation	n mode	Z factory	WW threshold	Higgs factory	tī
Applications of Jet Charge:	\sqrt{s} (G	eV)	91.2	160	240	360
• Electroweak measurements of $\Delta = \sin^2 \theta$	Run time	e (year)	2	1	10	5
• Lieutoweak measurements of A_{FB} , sin V_W	Instantaneous $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$	luminosity	191.7	26.6	8.3	0.83
 CP measurements in neutral B/D system Differential measurements 	Integrated lu $(ab^{-1})^2$	uminosity	100	6	20	1
· Differential measurements	Event y	vields	3×10^{12}	1×10^{8}	4×10^{6}	5×10^{5}
CEPC Advantages:		Process	Br	Tera-2	Z yield	
 High productivity of b/c hadrons 	-	$Z \rightarrow dd$	<i>ī</i> 15.84	4% 1.584	$\times 10^{11}$	
 Clean collision environment 		$Z \rightarrow u\bar{u}$	i 11.17	7% 1.117	$\times 10^{11}$	
 Good VTX/tracking and PID system 		$Z \rightarrow s\bar{s}$	15.84	1.584	$\times 10^{11}$	
		$Z \rightarrow c\bar{c}$	12.03	3% 1.203	$\times 10^{11}$	
		$Z \rightarrow b\bar{b}$	15.12	2% 1.512	$\times 10^{11}$	

Our work: jet charge performance at CEPC Z pole

using leading particle method & weighted charge method in each jet - test of principle

Samples:

- ► ~1×10⁵ $Z \rightarrow bb$ at CEPC Z pole (91.2 GeV) by Sherpa
- ► ~1×10⁶ $Z \rightarrow b\bar{b}$ at CEPC Z pole (91.2 GeV) by Herwig
- ► ~1×10⁷ $Z \rightarrow b\bar{b}$ at CEPC Z pole (91.2 GeV) by WHIZARD195
- ► ~1×10⁷ $Z \rightarrow c\bar{c}$ at CEPC Z pole (91.2 GeV) by WHIZARD195

Different Generators Different Flavor

Effective tagging power

- Input: momentum, charge & PID of final charged particle in each jet
- Performance quantified by misjudgment rate ω and effective tagging power

Misjudgment rate ω:

To describe the probability of misjudging the jet charge

Number of selected final particles that incorrectly reflect the charge of b jet to b jet $\omega = -$ Number of selected final particles

Efficiency:

To describe the selection efficiency of all samples:

 $\epsilon_{sel} = \frac{\text{Number of selected samples}}{\text{Number of all samples}}$

Effective tagging power ETP:

• Considering both misjudgment rate ω and efficiency to describe the total performance of jet charge

Effective tagging power $\epsilon_{ETP} = \epsilon_{sel} * (1 - 2 * \omega)^2$

Outline

- Jet Charge Introduction & CEPC Samples
- Two Methods & Dependences
- **★** (Leading Particle Method v.s. Weighted Charge Method)
- Jet Charge Performance Comparison
- Conclusion

 $Z \rightarrow b\bar{b}$

How to calculate misjudgment rate ω

Jet charge performance dependences

- **1. Dependence on leading particle type**
- 2. Dependence on b/c hadron type
- 3. Dependence on decay source of leading particle: from b/c hadron or QCD.

 $Z \rightarrow b\bar{b}$

Dependence on leading particle type

Dependence on leading particle type

 $Z \rightarrow c\bar{c}$

Effective Tagging Power of b **jet**

leading particle	ω	Effective tagging power
е	0.253	0.0186
μ	0.254	0.0185
K	0.276	0.0437
π	0.463	0.0030
р	0.354	0.0057
Tot	0.350	0.089
		by Whizard

if decayed from typical hadron?

$Z \rightarrow b\bar{b}$ **Percentage of leading particles for each b hadron (***b* **jet)**

All leading particles

Leading particles from leading hadron

Leading particles from QCD

Percentage of leading particles for each c hadron (*c* **jet)** $Z \rightarrow c\bar{c}$

All leading particles

Leading particles from leading hadron

Leading particles from QCD

Outline

- Jet Charge Introduction & CEPC Samples
- Two Methods & Dependences
- **★** (Leading Particle Method v.s. Weighted Charge Method)
- Jet Charge Performance Comparison
- Conclusion

Weighted jet charge

	Jet Charge De	finition							
			Methods	Optimized κ					
	$Q^{\kappa} = rac{1}{(p_{\mathrm{T}}^{\mathrm{jet}})^{\kappa}}\sum_{i}Q_{i}(p_{\mathrm{T}}^{i})^{\kappa}$,		Generat or	Whi	zard	Не	wig	She	erpa
ГНС	$O_{I}^{\kappa} = \sum O_{i} \left(p_{\parallel}^{i} \right)^{\kappa} / \sum \left(p_{\parallel}^{i} \right)^{\kappa}$	$p^i_{\scriptscriptstyle \parallel}=ec{p}^i\cdotec{p}_{ m iet}/ ec{p}_{ m iet} $	source	all	from B/ D	all	from B/ D	all	from B/ D
LUC	$\sim L \qquad \underline{L}_{i} \sim i \left(\Gamma \parallel \right) / \underline{L}_{i} \left(\Gamma \parallel \right) / $		All b hadrons	(ĸ=0.2)	(ĸ=0)	(κ=0.2)	(к= 0)	(ĸ=0.2)	(к=0)
	$Q^\kappa_T = \sum_i Q_i \left(p^i_\perp ight)^\kappa \Big/ \sum_i \left(p^i_\perp ight)^\kappa .$	$p_{\perp}^{i} = \vec{p}^{i} \times \vec{p}_{jet} / \vec{p}_{jet} $		(ĸ=0.2)	(ĸ=0.6)	(ĸ=0.2)	(ĸ=0.6)	(ĸ=0.3)	(ĸ=0.6)
	$\Sigma (E)^{K} O$		B+/B-	(к=0.3)	(к=0)	(ĸ=0.4)	(к=0)	(ĸ=0.3)	(ĸ=0)
CEPC	$Q_{jet}^{\kappa} = \frac{\Sigma_i(E_i) Q_i}{\Sigma_i(E_i)^{\kappa}}$		Bs/ Bsbar	(к=0)	(к=0)	(к=0)	(к=0)	(ĸ=0.2)	(ĸ=1.0)
further	$O^i - \sum \kappa^{(\mathbf{P})} O$	p_{T_h} E_h	Bc+/Bc-	(к=0.2)	(к=0)	(ĸ=0.7)	(к=0)	(к=0.6)	(ĸ=0)
	$\mathcal{Q}_{\text{dyn}} = \sum_{h \in i\text{-jet}} z_h \mathcal{Q}_h$	$z_h = \frac{1}{p_{T_J}}$ or $z_h = \frac{1}{E_J}$	Λb/ Λbbar	(к=0)	(к=1.0)	(к=0)	(к=0.9)	(к=0)	(к=0)
	Article in PRD: Particles and fields · April 2021.	DOI: 10.1103/PhysRevD.103.074028							

Method:

- Use the charge and momentum of all final charged particles in a jet with a weight parameter κ to calculate Q_{jet}^κ.
- the weight parameter κ is optimized for different decay modes.
- if $Q_{jet}^{\kappa} < 0$, we consider this is a b quark, and vise versa.

Mis-judgement rate $\boldsymbol{\omega}$

Methods	Leading Particle Method					Weighted Charge Method						
Generator	Whi	zard	Her	wig	She	erpa	Whizard		Herwig		Sherpa	
source	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D
All b hadrons	0.350	0.332	0.353	0.338	0.360	0.346	0.302 (κ=0.2)	0.035 (κ=0.0)	0.313 (κ=0.2)	0.042 (κ=0.0)	0.283 (κ=0.2)	0.044 (κ=0.0)
B0/B0bar	0.382	0.371	0.412	0.404	0.315	0.301	0.312 (κ=0.2)	0.396 (κ=0.6)	0.324 (κ=0.2)	0.423 (κ=0.6)	0.253 (κ=0.3)	0.311 (κ=0.6)
B+/B-	0.302	0.265	0.296	0.266	0.309	0.278	0.260 (κ=0.3)	0.003 (κ=0.0)	0.263 (κ=0.4)	0.003 (κ=0.0)	0.244 (κ=0.3)	0.003 (κ=0.0)
Bs/Bsbar	0.470	0.493	0.480	0.491	0.336	0.331	0.347 (κ=0.0)	0.453 (κ=0.0)	0.291 (κ=0.0)	0.457 (κ=0.0)	0.289 (κ=0.2)	0.388 (κ=1.0)
Bc+/Bc-	0.385	0.346	0.322	0.316	0.307	0.227	0.316 (κ=0.2)	0.008 (κ=0.0)	0.316 (κ=0.7)	0.007 (κ=0.0)	0.204 (κ=0.6)	0 (κ=0.0)
∧b/∧bbar	0.231	0.160	0.245	0.185	0.234	0.192	0.277 (κ=0.0)	0.432 (κ=1.0)	0.289 (κ=0.0)	0.423 (κ=0.9)	0.239 (κ=0.0)	0.427 (κ=0.0)
All D hadrons	0.276	0.201	0.265	0.189	0.270	0.202	0.175 (κ=0.0)	0.025 (κ=0.0)	0.175 (κ=0.0)	0.025 (κ=0.0)	0.165 (κ=0.0)	0.033 (κ=0.0)
D+/D-	0.180	0.259	0.244	0.125	0.278	0.151	0.128 (κ=0.0)	0.001 (κ=0.0)	0.131 (κ=0.0)	0.001 (κ=0.0)	0.120 (κ=0.0)	0.002 (κ=0.0)
D0/D0bar	0.257	0.192	0.253	0.200	0.246	0.187	0.128 (κ=0.0)	0.007 (κ=0.0)	0.132 (κ=0.0)	0.006 (κ=0.0)	0.119 (κ=0.0)	0.011 (κ=0.0)
Ds+/Ds-	0.312	0.225	0.193	0.198	0.291	0.210	0.128 (κ=0.0)	0.001 (κ=0.0)	0.129 (κ=0.0)	0.001 (κ=0.0)	0.118 (κ=0.0)	0.002 (κ=0.0)
∧с+/∧с-	0.235	0.068	0.245	0.073	0.204	0.066	0.126 (κ=0.0)	0.001 (κ=0.0)	0.132 (κ=0.0)	0.001 (κ=0.0)	0.117 (κ=0.0)	0.001 (κ=0.0)

Effective tagging power

Methods	Methods Leading Particle Method					Weighted Charge Method						
Generator	Whi	zard	Her	wig	She	erpa	Whizard		/hizard Herwig		Sherpa	
decay source	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D
All b hadrons	0.0895	0.1124	0.0859	0.1039	0.0786	0.0945	0.1571 (κ=0.2)	0.3750 (κ=0.0)	0.1396 (κ=0.2)	0.3492 (κ=0.0)	0.1877 (κ=0.2)	0.3495 (κ=0.0)
B0/B0bar	0.0555	0.0668	0.0311	0.0368	0.1367	0.1588	0.1419 (κ=0.2)	0.0430 (κ=0.6)	0.1239 (κ=0.2)	0.0236 (κ=0.6)	0.2449 (κ=0.3)	0.1431 (κ=0.6)
B+/B-	0.1576	0.2208	0.1660	0.2193	0.1463	0.1964	0.2301 (κ=0.3)	0.9686 (κ=0.0)	0.2241 (κ=0.4)	0.9655 (κ=0.0)	0.2620 (κ=0.3)	0.9644 (κ=0.0)
Bs/Bsbar	0.0037	0.0002	0.0016	0.0003	0.1082	0.1136	0.1200 (κ=0.0)	0.0003 (κ=0.0)	0.1081 (κ=0.0)	0.0003 (κ=0.0)	0.1787 (κ=0.2)	0.0498 (κ=1.0)
Bc+/Bc-	0.0530	0.0949	0.1268	0.1350	0.1490	0.2976	0.1359 (κ=0.2)	0.9272 (κ=0.0)	0.1352 (κ=0.7)	0.8647 (κ=0.0)	0.3510 (κ=0.6)	0.9716 (κ=0.0)
Λb/Λbbar	0.2885	0.4627	0.2605	0.3972	0.2830	0.3795	0.1217 (κ=0.0)	0.0186 (κ=1.0)	0.1080 (κ=0.0)	0.0236 (κ=0.9)	0.1642 (κ=0.0)	0.0010 (κ=0.0)
All D hadrons	0.2004	0.3574	0.2216	0.3872	0.2121	0.3549	0.3149 (κ=0.0)	0.3384 (κ=0.0)	0.3230 (κ=0.0)	0.3609 (κ=0.0)	0.3342 (κ=0.0)	0.3314 (κ=0.0)
D+/D-	0.1931	0.4654	0.2624	0.5640	0.1968	0.4873	0.5535 (κ=0.0)	0.9947 (κ=0.0)	0.5458 (κ=0.0)	0.9945 (κ=0.0)	0.5772 (κ=0.0)	0.9920 (κ=0.0)
D0/D0bar	0.2353	0.3795	0.2443	0.3607	0.2586	0.3931	0.5530 (κ=0.0)	0.9483 (κ=0.0)	0.5424 (κ=0.0)	0.9346 (κ=0.0)	0.5803 (κ=0.0)	0.9125 (κ=0.0)
Ds+/Ds-	0.1411	0.3024	0.1715	0.3656	0.1755	0.3365	0.5541 (κ=0.0)	0.9952 (κ=0.0)	0.5501 (κ=0.0)	0.9955 (κ=0.0)	0.5823 (κ=0.0)	0.9918 (κ=0.0)
∧с+/∧с-	0.2814	0.7481	0.2610	0.7279	0.3505	0.7537	0.5594 (κ=0.0)	0.9958 (κ=0.0)	0.5426 (κ=0.0)	0.9957 (κ=0.0)	0.5882 (κ=0.0)	0.9933 (κ=0.0)

Outline

- Jet Charge Introduction & CEPC Samples
- Two Methods & Dependences
- **★** (Leading Particle Method v.s. Weighted Charge Method)
- Jet Charge Performance Comparison
- Conclusion

Comparison with other experiments

1.0

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

0.0

ω

CEPC all B \rightarrow anything 15.71%

CEPC B0 \rightarrow anything 14.19%

CEPC B- \rightarrow anything 23.01%

CEPC Bc \rightarrow anything 13.59%

CEPC $\Lambda b \rightarrow$ anything 12.17%

CEPC Bs \rightarrow J/ $\Psi\Phi$ 20.2% (use kaon)

pT weighted method

Leading particle method

CEPC b quark→anything 8.95%

CEPC b quark→electron 1.86%

CEPC b quark→muon 1.85%

CEPC b quark→Kaon 4.37%

CEPC b quark \rightarrow pion 0.30%

CEPC b quark→proton 0.57%

Outline

- Jet Charge Introduction & CEPC Samples
- Two Methods & Dependences
- **★** (Leading Particle Method v.s. Weighted Charge Method)
- Jet Charge Performance Comparison
- Conclusion

Conclusion

Main results:

Analysis of jet charge performance for single jet at CEPC Z pole using two methods: leading particle method and weighted charged method:

★ Effective tagging power (Whizard195, Herwig, Sherpa):

- For $Z \rightarrow b\bar{b}$: Effective tagging power = 0.090, 0.086, 0.079 (using leading particle charge) 0.157, 0.140, 0.188 (using weighted jet charge)
- For $Z \rightarrow c\bar{c}$: Effective tagging power = 0.200, 0.222, 0.212 (using leading particle charge)

0.315, 0.323, 0.334 (using weighted jet charge)

★ Dependences:

- High dependence on leading particle type
 - Lepton and Kaon \rightarrow better misjudgment rate ω than pion and proton.
- High dependence on b/c hadrons type
 - especially for B_s , Λ_b , Λ_c , ...
- High dependence on the source of leading particle:
 - From b/c hadron decay \rightarrow usually better misjudgment rate ω & effective tagging power.
- **★** Requirements:
 - Good performance of tracking & PID

Future:

Specific channels using corresponding prompt particles Function of weight parameter κ

Back Up

Other Jet Charge Experiments

Jet charge at LEP & SLC

17 (0.6) million Z decays at LEP (SLC), 91.2GeV

Method:

Result:

- Measurements of \mathcal{A}_{b} and \mathcal{A}_{c} using leptons [152];
 - A measurement of \mathcal{A}_{c} using D-mesons [153];
 - A measurement of \mathcal{A}_{b} using jet charge [154];
 - A measurement of \mathcal{A}_{b} using vertex charge [155];
 - A measurement of \mathcal{A}_{b} using kaons [156];
 - A measurement of \mathcal{A}_{c} using vertex charge and kaons [155].

The jet charge was calculated by summing over all tracks in a thrust hemisphere:

$$Q_{\text{jet}} = \frac{\sum |p_{||,i}|^{\kappa} q_i}{\sum |p_{||,i}|^{\kappa}},\tag{11}$$

where $p_{||,i}$ is the component of momentum parallel to the thrust axis, and q_i is the charge of track *i* in the hemisphere.

The 'vertex charge', $q_{\rm vtx}$, is a weighted sum of the charges of tracks in a jet which contains a tagged secondary vertex:

$$q_{\rm vtx} = \sum_{\rm tracks \ i} \omega_i q_i, \tag{5}$$

where q_i is the charge of track i, and ω_i is related to the probability that a track came from the secondary vertex relative to the probability that it came from the primary vertex, and i runs over all tracks in the jet. The vertex charge has been

(statistical uncertainties are twice bigger than the systematic ones.)

Table 1: LEP measurements of $A_{\text{FB}}^{0,b}$ and associated statistical, total systematic, and QCD-systematic uncertainties (with the newly-computed QCD systematics quoted in parentheses).

Measurement	$A^{0,b}_{ m FB}$		uncertainties	
	15	stat.	total syst.	QCD syst. (new)
ALEPH lepton $(2002)^4$	$0.1003 \pm 0.0038 \pm 0.0017$	4.1%	1.7%	0.6%(0.8%)
DELPHI lepton $(2004-5)^5$	$0.1025 \pm 0.0051 \pm 0.0024$	6.4%	2.4%	1.5%(1.3%)
L3 lepton $(1999)^{6}$	$0.1001 \pm 0.0060 \pm 0.0035$	6.9%	3.4%	1.8%(0.8%)
OPAL lepton $(2003)^7$	$0.0977 \pm 0.0038 \pm 0.0018$	4.3%	1.5%	1.1%(1.4%)
ALEPH jet-charge $(2001)^{8}$	$0.1010 \pm 0.0025 \pm 0.0012$	2.7%	1.1%	0.5%(0.5%)
DELPHI jet-charge $(2005)^9$	$0.0978 \pm 0.0030 \pm 0.0015$	3.3%	1.5%	0.5%(0.4%)
L3 jet-charge $(1998)^{10}$	$0.0948 \pm 0.0101 \pm 0.0056$	10.8%	5.9%	4.1%(0.4%)
OPAL jet-charge $(2002)^{11}$	$0.0994 \pm 0.0034 \pm 0.0018$	3.7%	1.8%	1.5%(0.3%)

Jet charge at BABAR

integrated luminosity of 425.7 fb⁻¹, Y (4S) resonance

Method:

			1466°4	0101100	$-\omega_i$,
and effective tag	ging efficiency	$Q_i { m extrac}$	cted for	each ta	agging
category i from t	he B_{flav} samp	ole.			

Category	$\epsilon_i~(\%)$	w_i (%)	$\Delta w_i \ (\%)$	$Q_i \ (\%)$
Lepton	8.96 ± 0.07	2.8 ± 0.3	0.3 ± 0.5	7.98 ± 0.11
Kaon I	10.82 ± 0.07	5.3 ± 0.3	-0.1 ± 0.6	8.65 ± 0.14
Kaon II	17.19 ± 0.09	14.5 ± 0.3	0.4 ± 0.6	8.68 ± 0.17
KaonPion	13.67 ± 0.08	23.3 ± 0.4	-0.7 ± 0.7	3.91 ± 0.12
Pion	14.18 ± 0.08	32.5 ± 0.4	5.1 ± 0.7	1.73 ± 0.09
Other	9.54 ± 0.07	41.5 ± 0.5	3.8 ± 0.8	0.27 ± 0.04
All	74.37 ± 0.10			31.2 ± 0.3

Jet charge at Belle2

integrated luminosity of 62.8 fb⁻¹, Y (4S) resonance

Method:

THE CATEGORY-BASED FLAVOR TAGGER

Categories	Targets for \overline{B}^0
Electron	<i>e</i> ⁻
Intermediate Electron	e^+
Muon	μ^-
Intermediate Muon	μ^+
Kinetic Lepton	ℓ^-
Intermediate Kinetic Leptor	$\iota = \ell^+$
Kaon	K^{-}
Kaon-Pion	K^-,π^+
Slow Pion	π^+
$\text{Maximum } p^*$	ℓ^-,π^-
Fast-Slow-Correlated (FSC)	ℓ^-,π^+
Fast Hadron	$\pi^-,~K^-$
Lambda	Λ

THE DEEP-LEARNING FLAVOR TAGGER

Result:

Using a category-based flavor tagging algorithm, we obtain for neutral B candidates the total effective efficiency

$$\varepsilon_{\rm eff} = (30.0 \pm 1.2(\text{stat}) \pm 0.4(\text{syst}))\%,$$

and for charged B candidates

$$\varepsilon_{\rm eff} = (37.0 \pm 0.6 (\text{stat}) \pm 0.2 (\text{syst}))\%.$$

Using a deep-learning-based flavor tagging algorithm, we obtain for neutral B candidates the total effective efficiency

$$\varepsilon_{\rm eff} = (28.8 \pm 1.2(\text{stat}) \pm 0.4(\text{syst}))\%,$$

and for charged B candidates

$$\varepsilon_{\text{eff}} = (39.9 \pm 0.6(\text{stat}) \pm 0.2(\text{syst}))\%.$$

Jet charge at LHCb

integrated luminosity of 3 fb⁻¹, Y (4S) resonance

PV

SV

Method:

Figure 3.1: Effective tagging efficiency of (left) different HEP experiments and (right) LHCb flavour tagging algorithms [40]. The white lines indicate contours of constant tagging power.

Jet charge at ATLAS

integrated luminosity of 14.3 fb⁻¹, 8TeV

Method: The *jet charge* is defined as

$$Q_{\text{jet}} = \frac{\sum_{i}^{N \text{ tracks}} q_i \cdot (p_{\text{T}i})^{\kappa}}{\sum_{i}^{N \text{ tracks}} (p_{\text{T}i})^{\kappa}},$$

where $\kappa = 1.1$ and the sum is over the tracks associated with the jet, excluding those tracks associated with a primary vertex other than that of the signal decay and tracks from the signal candidate. Figure 4 shows the distribution of the opposite-side jet-charge for B^{\pm} signal candidates.

Result:

Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]
Combined μ	4.12 ± 0.02	47.4 ± 0.2	0.92 ± 0.02
Electron	1.19 ± 0.01	49.2 ± 0.3	0.29 ± 0.01
Segment-tagged μ	1.20 ± 0.01	28.6 ± 0.2	0.10 ± 0.01
Jet-charge	13.15 ± 0.03	11.85 ± 0.03	0.19 ± 0.01
Total	19.66 ± 0.04	27.56 ± 0.06	1.49 ± 0.02

Table 1. Summary of tagging performance for the different flavour tagging methods described in the text. Uncertainties shown are statistical only. The efficiency and tagging power are each determined by summing over the individual bins of the charge distribution. The effective dilution is obtained from the measured efficiency and tagging power. For the efficiency, dilution, and tagging power, the corresponding uncertainty is determined by combining the appropriate uncertainties in the individual bins of each charge distribution.

Jet charge at CMS

integrated luminosity of 19.7 fb⁻¹, 8TeV

Method:

$$\begin{aligned} Q^{\kappa} &= \frac{1}{(p_{\mathrm{T}}^{\mathrm{jet}})^{\kappa}} \sum_{i} Q_{i} (p_{\mathrm{T}}^{i})^{\kappa}, \\ Q^{\kappa}_{L} &= \sum_{i} Q_{i} \left(p_{\parallel}^{i} \right)^{\kappa} / \sum_{i} \left(p_{\parallel}^{i} \right)^{\kappa}, \qquad p_{\parallel}^{i} = \vec{p}^{i} \cdot \vec{p}_{\mathrm{jet}} / |\vec{p}_{\mathrm{jet}}| \\ Q^{\kappa}_{T} &= \sum_{i} Q_{i} \left(p_{\perp}^{i} \right)^{\kappa} / \sum_{i} \left(p_{\perp}^{i} \right)^{\kappa}, \qquad p_{\perp}^{i} = |\vec{p}^{i} \times \vec{p}_{\mathrm{jet}}| / |\vec{p}_{\mathrm{jet}}| \end{aligned}$$

Result:

Table 1: Systematic uncertainties in terms of their corresponding inverse-variance-weighted mean in the fractional deviation as defined in Eq. (4) in percent (%).

Sources of uncertainty	$\kappa = 1.0$			$\kappa = 0.6$			$\kappa = 0.3$		
	Q ^κ	Q_L^{κ}	Q_T^{κ}	Q ^κ	Q_L^{κ}	Q_T^{κ}	Q ^κ	Q_L^{κ}	Q_T^{κ}
Jet energy scale	0.7	<0.1	<0.1	0.4	<0.1	<0.1	0.3	<0.1	<0.1
Jet energy resolution	0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Track reconstruction	0.4	0.4	0.5	0.5	0.4	0.5	0.5	0.4	0.4
Track $p_{\rm T}$ resolution	1.4	1.0	0.8	1.0	0.6	0.7	1.5	0.4	0.4
Pileup	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Response matrix modeling	1.6	1.6	1.8	1.0	0.8	1.3	1.5	1.3	1.3
Response matrix statistics	0.9	0.9	0.6	0.6	0.6	0.5	0.6	0.5	0.4

Jet charge at CEPC for B_s^0

2.4.2 Flavor tagging power

The algorithm is applied to a Monte Carlo truth-level simulation, assuming perfect particle identification. With the tagging algorithm, the tagging efficiency is estimated as 67%. The miss-tagging rate is 22.5%. Thus, the tagging power is estimated to be 20.2%. $B_s^0 \rightarrow J/\psi \phi \rightarrow \mu^+ \mu^- K^+ K^-$ ($e^+ e^- K^+ K^-$) by Mingrui arXiv:2205.10565v1

Percentage of Leading Particles

Different Generators (Whizard195 & Herwig & Sherpa)

Percentage of leading particles (*b* jet, Whizard195)

Percentage of leading particles (*b* **jet, Herwig)**

Percentage of leading particles (*b* **jet, Sherpa)**

$b \text{ jet} \rightarrow \bar{b} \text{ jet}$

Percentage of leading particles (\bar{b} jet, Whizard195)

Leading particles from leading hadron ~83.1%

Leading particles from QCD ~16.9%

Percentage of leading particles (\bar{b} jet, Herwig)

Leading particles from leading hadron ~82.6%

Leading particles from QCD ~17.4%

Percentage of leading particles (\bar{b} jet, Sherpa)

$Z \rightarrow b\bar{b} \rightarrow Z \rightarrow c\bar{c}$

Percentage of leading particles (*c* **jet, Whizard195)**

All leading particles

Leading particles from leading hadron

Leading particles from QCD

Percentage of leading particles (\bar{c} jet, Whizard195)

All leading particles

Leading particles from leading hadron

Leading particles from QCD

Effective Tagging Power Single Jet

Optimized **K** for weighed charge method

Methods	Weighted Charge Method											
Generator	Whi	zard	Her	wig	She	erpa						
source	all	from B/D	all	from B/D	all	from B/D						
All b hadrons	(κ=0.2)	(к=0)	(к=0.2)	(ĸ=0)	(κ=0.2)	(ĸ=0)						
B0/B0bar	(κ=0.2)	(ĸ=0.6)	(к=0.2)	(к=0.6)	(к=0.3)	(ĸ=0.6)						
B+/B-	(κ=0.3)	(ĸ=0)	(κ=0.4)	(ĸ=0)	(κ=0.3)	(ĸ=0)						
Bs/Bsbar	(к=0)	(ĸ=0)	(ĸ=0)	(ĸ=0)	(κ=0.2)	(κ=1.0)						
Bc+/Bc-	(κ=0.2)	(ĸ=0)	(к=0.7)	(ĸ=0)	(к=0.6)	(ĸ=0)						
∧b/∧bbar	(к=0)	(κ=1.0)	(ĸ=0)	(κ=0.9)	(ĸ=0)	(ĸ=0)						
All D hadrons	(K=0)	(к=0)	(к=0)	(ĸ=0)	(ĸ=0)	(ĸ=0)						
D+/D-	(к=0)	(ĸ=0)	(ĸ=0)	(к=0)	(к=0)	(κ=0)						
D0/D0bar	(к=0)	(ĸ=0)	(ĸ=0)	(к=0)	(к=0)	(ĸ=0)						
Ds+/Ds-	(к=0)	(ĸ=0)	(ĸ=0)	(к=0)	(к=0)	(κ=0)						
Λс+/Λс-	(κ =0)	(κ=0)	(κ=0)	(κ =0)	(κ =0)	(κ=0)						

Two calculations of mis-judgement rate $\boldsymbol{\omega}$

Methods	Lea	ding Particl	e Method(c	alculated fro	om percent	age)	Leading Particle Method(calculated from effective tagging power)						
Generator	Whi	zard	Her	wig	Sherpa		Whizard		Herwig		Sherpa		
source	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D	
All b hadrons	0.383	0.360	0.379	0.350	0.382	0.360	0.350	0.332	0.353	0.338	0.360	0.346	
B0/B0bar	0.413	0.410	0.435	0.433	0.350	0.340	0.382	0.371	0.412	0.404	0.315	0.301	
B+/B-	0.349	0.306	0.329	0.293	0.340	0.305	0.302	0.265	0.296	0.266	0.309	0.278	
Bs/Bsbar	0.482	0.498	0.489	0.498	0.389	0.385	0.470	0.493	0.480	0.491	0.336	0.331	
Bc+/Bc-	0.421	0.371	0.374	0.348	0.346	0.256	0.385	0.346	0.322	0.316	0.307	0.227	
∧b/∧bbar	0.260	0.204	0.293	0.247	0.274	0.240	0.231	0.160	0.245	0.185	0.234	0.192	
All D hadrons	0.304	0.216	0.295	0.203	0.301	0.214	0.276	0.201	0.265	0.189	0.270	0.202	
D+/D-	0.316	0.169	0.272	0.130	0.310	0.163	0.180	0.259	0.244	0.125	0.278	0.151	
D0/D0bar	0.297	0.236	0.301	0.243	0.293	0.234	0.257	0.192	0.253	0.200	0.246	0.187	
Ds+/Ds-	0.350	0.242	0.333	0.210	0.325	0.226	0.312	0.225	0.193	0.198	0.291	0.210	
∧с+/∧с-	0.251	0.086	0.251	0.086	0.226	0.078	0.235	0.068	0.245	0.073	0.204	0.066	

Mis-judgement rate ω (calculated from percentage)

Methods		L	eading Par	ticle Methoo	ł		Weighted Charge Method						
Generator	Whi	zard	Her	wig	Sherpa		Whizard		Herwig		Sherpa		
source	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D	
All b hadrons	0.383	0.360	0.379	0.350	0.382	0.360	0.302 (κ=0.2)	0.035 (κ=0.0)	0.313 (κ=0.2)	0.042 (κ=0.0)	0.283 (κ=0.2)	0.044 (κ=0.0)	
B0/B0bar	0.413	0.410	0.435	0.433	0.350	0.340	0.312 (κ=0.2)	0.396 (κ=0.6)	0.324 (κ=0.2)	0.423 (κ=0.6)	0.253 (κ=0.3)	0.311 (κ=0.6)	
B+/B-	0.349	0.306	0.329	0.293	0.340	0.305	0.260 (κ=0.3)	0.003 (κ=0.0)	0.263 (κ=0.4)	0.003 (κ=0.0)	0.244 (κ=0.3)	0.003 (κ=0.0)	
Bs/Bsbar	0.482	0.498	0.489	0.498	0.389	0.385	0.347 (κ=0.0)	0.453 (κ=0.0)	0.291 (κ=0.0)	0.457 (κ=0.0)	0.289 (κ=0.2)	0.388 (κ=1.0)	
Bc+/Bc-	0.421	0.371	0.374	0.348	0.346	0.256	0.316 (κ=0.2)	0.008 (κ=0.0)	0.316 (κ=0.7)	0.007 (κ=0.0)	0.204 (κ=0.6)	0 (κ=0.0)	
Λb/Λbbar	0.260	0.204	0.293	0.247	0.274	0.240	0.277 (κ=0.0)	0.432 (κ=1.0)	0.289 (κ=0.0)	0.423 (κ=0.9)	0.239 (κ=0.0)	0.427 (κ=0.0)	
All D hadrons	0.304	0.216	0.295	0.203	0.301	0.214	0.175 (κ=0.0)	0.025 (κ=0.0)	0.175 (κ=0.0)	0.025 (κ=0.0)	0.165 (κ=0.0)	0.033 (κ=0.0)	
D+/D-	0.316	0.169	0.272	0.130	0.310	0.163	0.128 (κ=0.0)	0.001 (κ=0.0)	0.131 (κ=0.0)	0.001 (κ=0.0)	0.120 (κ=0.0)	0.002 (κ=0.0)	
D0/D0bar	0.297	0.236	0.301	0.243	0.293	0.234	0.128 (κ=0.0)	0.007 (κ=0.0)	0.132 (κ=0.0)	0.006 (κ=0.0)	0.119 (κ=0.0)	0.011 (κ=0.0)	
Ds+/Ds-	0.350	0.242	0.333	0.210	0.325	0.226	0.128 (κ=0.0)	0.001 (κ=0.0)	0.129 (κ=0.0)	0.001 (κ=0.0)	0.118 (κ=0.0)	0.002 (κ=0.0)	
∧с+/∧с-	0.251	0.086	0.251	0.086	0.226	0.078	0.126 (κ=0.0)	0.001 (κ=0.0)	0.132 (κ=0.0)	0.001 (κ=0.0)	0.117 (κ=0.0)	0.001 (κ=0.0)	

Mis-judgement rate ω(calculated from effective tagging power)

Methods		L	eading Par.	ticle Methoo	ł		Weighted Charge Method						
Generator	Whi	zard	Her	wig	Sherpa		Whizard		Herwig		Sherpa		
source	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D	
All b hadrons	0.350	0.332	0.353	0.338	0.360	0.346	0.302 (κ=0.2)	0.035 (κ=0.0)	0.313 (κ=0.2)	0.042 (κ=0.0)	0.283 (κ=0.2)	0.044 (κ=0.0)	
B0/B0bar	0.382	0.371	0.412	0.404	0.315	0.301	0.312 (κ=0.2)	0.396 (κ=0.6)	0.324 (κ=0.2)	0.423 (κ=0.6)	0.253 (κ=0.3)	0.311 (κ=0.6)	
B+/B-	0.302	0.265	0.296	0.266	0.309	0.278	0.260 (κ=0.3)	0.003 (κ=0.0)	0.263 (κ=0.4)	0.003 (κ=0.0)	0.244 (κ=0.3)	0.003 (κ=0.0)	
Bs/Bsbar	0.470	0.493	0.480	0.491	0.336	0.331	0.347 (κ=0.0)	0.453 (κ=0.0)	0.291 (κ=0.0)	0.457 (κ=0.0)	0.289 (κ=0.2)	0.388 (κ=1.0)	
Bc+/Bc-	0.385	0.346	0.322	0.316	0.307	0.227	0.316 (κ=0.2)	0.008 (κ=0.0)	0.316 (κ=0.7)	0.007 (κ=0.0)	0.204 (κ=0.6)	0 (κ=0.0)	
∧b/∧bbar	0.231	0.160	0.245	0.185	0.234	0.192	0.277 (κ=0.0)	0.432 (κ=1.0)	0.289 (κ=0.0)	0.423 (κ=0.9)	0.239 (κ=0.0)	0.427 (κ=0.0)	
All D hadrons	0.276	0.201	0.265	0.189	0.270	0.202	0.175 (κ=0.0)	0.025 (κ=0.0)	0.175 (κ=0.0)	0.025 (κ=0.0)	0.165 (κ=0.0)	0.033 (κ=0.0)	
D+/D-	0.180	0.259	0.244	0.125	0.278	0.151	0.128 (κ=0.0)	0.001 (κ=0.0)	0.131 (κ=0.0)	0.001 (κ=0.0)	0.120 (κ=0.0)	0.002 (κ=0.0)	
D0/D0bar	0.257	0.192	0.253	0.200	0.246	0.187	0.128 (κ=0.0)	0.007 (κ=0.0)	0.132 (κ=0.0)	0.006 (κ=0.0)	0.119 (κ=0.0)	0.011 (κ=0.0)	
Ds+/Ds-	0.312	0.225	0.193	0.198	0.291	0.210	0.128 (κ=0.0)	0.001 (κ=0.0)	0.129 (κ=0.0)	0.001 (κ=0.0)	0.118 (κ=0.0)	0.002 (κ=0.0)	
∧с+/∧с-	0.235	0.068	0.245	0.073	0.204	0.066	0.126 (κ=0.0)	0.001 (κ=0.0)	0.132 (κ=0.0)	0.001 (κ=0.0)	0.117 (κ=0.0)	0.001 (κ=0.0)	

Effective tagging power

Methods	Leading Particle Method						Weighted Charge Method						
Generator	Whi	zard	Her	wig	Sherpa		Whizard		Herwig		Sherpa		
decay source	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D	
All b hadrons	0.0895	0.1124	0.0859	0.1039	0.0786	0.0945	0.1571 (κ=0.2)	0.3750 (κ=0.0)	0.1396 (κ=0.2)	0.3492 (κ=0.0)	0.1877 (κ=0.2)	0.3495 (κ=0.0)	
B0/B0bar	0.0555	0.0668	0.0311	0.0368	0.1367	0.1588	0.1419 (κ=0.2)	0.0430 (κ=0.6)	0.1239 (κ=0.2)	0.0236 (κ=0.6)	0.2449 (κ=0.3)	0.1431 (κ=0.6)	
B+/B-	0.1576	0.2208	0.1660	0.2193	0.1463	0.1964	0.2301 (κ=0.3)	0.9686 (κ=0.0)	0.2241 (κ=0.4)	0.9655 (κ=0.0)	0.2620 (κ=0.3)	0.9644 (κ=0.0)	
Bs/Bsbar	0.0037	0.0002	0.0016	0.0003	0.1082	0.1136	0.1200 (κ=0.0)	0.0003 (κ=0.0)	0.1081 (κ=0.0)	0.0003 (κ=0.0)	0.1787 (κ=0.2)	0.0498 (κ=1.0)	
Bc+/Bc-	0.0530	0.0949	0.1268	0.1350	0.1490	0.2976	0.1359 (κ=0.2)	0.9272 (κ=0.0)	0.1352 (κ=0.7)	0.8647 (κ=0.0)	0.3510 (κ=0.6)	0.9716 (κ=0.0)	
Λb/Λbbar	0.2885	0.4627	0.2605	0.3972	0.2830	0.3795	0.1217 (κ=0.0)	0.0186 (κ=1.0)	0.1080 (κ=0.0)	0.0236 (κ=0.9)	0.1642 (κ=0.0)	0.0010 (κ=0.0)	
All D hadrons	0.2004	0.3574	0.2216	0.3872	0.2121	0.3549	0.3149 (κ=0.0)	0.3384 (κ=0.0)	0.3230 (κ=0.0)	0.3609 (κ=0.0)	0.3342 (κ=0.0)	0.3314 (κ=0.0)	
D+/D-	0.1931	0.4654	0.2624	0.5640	0.1968	0.4873	0.5535 (κ=0.0)	0.9947 (κ=0.0)	0.5458 (κ=0.0)	0.9945 (κ=0.0)	0.5772 (κ=0.0)	0.9920 (κ=0.0)	
D0/D0bar	0.2353	0.3795	0.2443	0.3607	0.2586	0.3931	0.5530 (κ=0.0)	0.9483 (κ=0.0)	0.5424 (κ=0.0)	0.9346 (κ=0.0)	0.5803 (κ=0.0)	0.9125 (κ=0.0)	
Ds+/Ds-	0.1411	0.3024	0.1715	0.3656	0.1755	0.3365	0.5541 (κ=0.0)	0.9952 (κ=0.0)	0.5501 (κ=0.0)	0.9955 (κ=0.0)	0.5823 (κ=0.0)	0.9918 (κ=0.0)	
∧c+/∧c-	0.2814	0.7481	0.2610	0.7279	0.3505	0.7537	0.5594 (κ=0.0)	0.9958 (κ=0.0)	0.5426 (κ=0.0)	0.9957 (κ=0.0)	0.5882 (κ=0.0)	0.9933 (κ=0.0)	

Mis-judgement rate ω (calculated from percentage)

Methods	s Leading Particle Method						Weighted Charge Method						
Generator	Whi	zard	Her	wig	Sherpa		Whizard		Herwig		Sherpa		
source	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D	
All b hadrons	0.383	0.360	0.379	0.350	0.382	0.360	0.302	0.035	0.313	0.042	0.283	0.044	
B0/B0bar	0.413	0.410	0.435	0.433	0.350	0.340	0.312	0.396	0.324	0.423	0.253	0.311	
B+/B-	0.349	0.306	0.329	0.293	0.340	0.305	0.260	0.003	0.263	0.003	0.244	0.003	
Bs/Bsbar	0.482	0.498	0.489	0.498	0.389	0.385	0.347	0.453	0.291	0.457	0.289	0.388	
Bc+/Bc-	0.421	0.371	0.374	0.348	0.346	0.256	0.316	0.008	0.316	0.007	0.204	0	
∧b/∧bbar	0.260	0.204	0.293	0.247	0.274	0.240	0.277	0.432	0.289	0.423	0.239	0.427	
All D hadrons	0.304	0.216	0.295	0.203	0.301	0.214	0.175	0.025	0.175	0.025	0.165	0.033	
D+/D-	0.316	0.169	0.272	0.130	0.310	0.163	0.128	0.001	0.131	0.001	0.120	0.002	
D0/D0bar	0.297	0.236	0.301	0.243	0.293	0.234	0.128	0.007	0.132	0.006	0.119	0.011	
Ds+/Ds-	0.350	0.242	0.333	0.210	0.325	0.226	0.128	0.001	0.129	0.001	0.118	0.002	
∧с+/∧с-	0.251	0.086	0.251	0.086	0.226	0.078	0.126	0.001	0.132	0.001	0.117	0.001	

Mis-judgement rate ω (calculated from effective tagging power)

Methods		Leading Particle Method						Weighted Charge Method						
Generator	Whi	zard	Her	wig	Sherpa		Whizard		Herwig		Sherpa			
source	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D		
All b hadrons	0.350	0.332	0.353	0.338	0.360	0.346	0.302	0.035	0.313	0.042	0.283	0.044		
B0/B0bar	0.382	0.371	0.412	0.404	0.315	0.301	0.312	0.396	0.324	0.423	0.253	0.311		
B+/B-	0.302	0.265	0.296	0.266	0.309	0.278	0.260	0.003	0.263	0.003	0.244	0.003		
Bs/Bsbar	0.470	0.493	0.480	0.491	0.336	0.331	0.347	0.453	0.291	0.457	0.289	0.388		
Bc+/Bc-	0.385	0.346	0.322	0.316	0.307	0.227	0.316	0.008	0.316	0.007	0.204	0		
∧b/∧bbar	0.231	0.160	0.245	0.185	0.234	0.192	0.277	0.432	0.289	0.423	0.239	0.427		
All D hadrons	0.276	0.201	0.265	0.189	0.270	0.202	0.175	0.025	0.175	0.025	0.165	0.033		
D+/D-	0.180	0.259	0.244	0.125	0.278	0.151	0.128	0.001	0.131	0.001	0.120	0.002		
D0/D0bar	0.257	0.192	0.253	0.200	0.246	0.187	0.128	0.007	0.132	0.006	0.119	0.011		
Ds+/Ds-	0.312	0.225	0.193	0.198	0.291	0.210	0.128	0.001	0.129	0.001	0.118	0.002		
∧c+/∧c-	0.235	0.068	0.245	0.073	0.204	0.066	0.126	0.001	0.132	0.001	0.117	0.001		

Effective tagging power

Methods		L	eading Par.	ticle Method	b			N	leighted Ch	arge Metho	d	
Generator	Whi	zard	Her	wig	Sherpa		Whizard		Herwig		Sherpa	
decay source	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D	all	from B/D
All b hadrons	0.0895	0.1124	0.0859	0.1039	0.0786	0.0945	0.1571	0.3750	0.1396	0.3492	0.1877	0.3495
B0/B0bar	0.0555	0.0668	0.0311	0.0368	0.1367	0.1588	0.1419	0.0430	0.1239	0.0236	0.2449	0.1431
B+/B-	0.1576	0.2208	0.1660	0.2193	0.1463	0.1964	0.2301	0.9686	0.2241	0.9655	0.2620	0.9644
Bs/Bsbar	0.0037	0.0002	0.0016	0.0003	0.1082	0.1136	0.1200	0.0003	0.1081	0.0003	0.1787	0.0498
Bc+/Bc-	0.0530	0.0949	0.1268	0.1350	0.1490	0.2976	0.1359	0.9272	0.1352	0.8647	0.3510	0.9716
∧b/∧bbar	0.2885	0.4627	0.2605	0.3972	0.2830	0.3795	0.1217	0.0186	0.1080	0.0236	0.1642	0.0010
All D hadrons	0.2004	0.3574	0.2216	0.3872	0.2121	0.3549	0.3149	0.3384	0.3230	0.3609	0.3342	0.3314
D+/D-	0.1931	0.4654	0.2624	0.5640	0.1968	0.4873	0.5535	0.9947	0.5458	0.9945	0.5772	0.9920
D0/D0bar	0.2353	0.3795	0.2443	0.3607	0.2586	0.3931	0.5530	0.9483	0.5424	0.9346	0.5803	0.9125
Ds+/Ds-	0.1411	0.3024	0.1715	0.3656	0.1755	0.3365	0.5541	0.9952	0.5501	0.9955	0.5823	0.9918
∧с+/∧с-	0.2814	0.7481	0.2610	0.7279	0.3505	0.7537	0.5594	0.9958	0.5426	0.9957	0.5882	0.9933

Angle Distributions

$Z \rightarrow b\bar{b}$ Angle distribution of each flavor of final leading particles

Angle distribution of two jets is asymmetry

Image The more asymmetrical, the more accurate

The lepton and Kaon is more asymmetrical than pion and proton
Proton behaves different from others

$Z \rightarrow c\bar{c}$ Angle distribution of each flavor of final leading particles

Angle distribution of two jets is asymmetry

Image The more asymmetrical, the more accurate

The lepton and Kaon is more asymmetrical than pion and proton
Kaon behaves different from others

Dependence on Energy Threshold using Leading Particle Method

Dependence on Energy threshold of final leading particles

No energy threshold of final leading particles → best effective tagging power.

Dependence on Decay Modes Take Leading Kaon and Muon as Examples

Energy spectrum of final leading K^+

rightarrow Energy spectrum of final leading K^+ from different decay modes is different

$Z \rightarrow b\bar{b}$ **Percent** of leading K^+ from different decays

rightarrow The purple end final leading K^+ is closer to b jet

The green part final leading K^+ is neither closer to b jet nor closer to \overline{b} jet \overline{b} for \overline{b} for \overline{b} and \overline{b} is closer to \overline{b} is the red of \overline{b} in the second second

Different decays v.s. Energy Threshold

Percent of final leading K⁺ from different decay modes v.s. **Energy Threshold**

 $Z \rightarrow b\bar{b}$

Solution K^+ from different decay modes varies with energy threshold K^+ (closer to *b* jet) increase as the energy threshold goes up The red end K^+ (closer to \overline{b} jet) decrease as the energy threshold goes up

$Z \rightarrow b\bar{b}$ wof different decay modes v.s. Energy Threshold

Misjudgment rate ω of final leading K^+ from different decay modes v.s. **Energy Threshold**

rightarrow p+ close to 1 makes K^+ closer to b jet, p+ close to 0 makes K^+ closer to \overline{b} jet

$Z \rightarrow b\bar{b}$ Energy spectrum of leading μ^- from different decays

 $--\mu^{-}$ decayed from b quark $--\mu^{-}$ decayed from \bar{c} quark $--\mu^{-}$ decayed from τ^{-} quark

- rightarrow Energy spectrum of final leading μ^- from different decay modes is different
- rightarrow Energy spectrum of final leading μ^- from different decay modes varies with energy threshold

Percent of leading μ^- from different decays

 \square The purple end final leading μ^- is closer to b jet

 $Z \rightarrow bb$

The green part final leading μ^- is neither closer to b jet nor closer to \overline{b} jet The red end final leading μ^- is closer to \overline{b} jet

Different decays v.s. Energy Threshold

Energy (17.85,20.85)

Energy (17.85,38.45)

Percent of final leading μ^- from different decay modes v.s. **Energy Threshold**

 $Z \rightarrow b\bar{b}$

Energy (12.65,14.10)

☞ Percent of final leading μ^- from different decay modes varies with energy threshold ☞ The purple end μ^- (closer to b jet) increase as the energy threshold goes up ☞ The red end μ^- (closer to \overline{b} jet) decrease as the energy threshold goes up

Energy (15.77,17.85)

Energy (14.10,15.77)

$Z \rightarrow b\bar{b}$ wof different decay modes v.s. Energy Threshold

Misjudgment rate ω of final leading μ^- from different decay modes v.s. **Energy Threshold**

rightarrow p- close to 0 makes μ^- closer to b jet, p- close to 1 makes μ^- closer to \overline{b} jet

Effective Tagging Power Single Jet → Double Jets

For "same charged" samples

If the leading particles of two jets have same charge, select the leading particle with higher energy.

$Z \rightarrow b\bar{b}$ Percentage of **b** hadrons (*b* jet vs \bar{b} jet)

percent bbar jet → b jet ↓	B ⁰	B+	₿s ⁰	B _c +	Λ_b bar	others	all
B ⁰ bar	17.360%	17.350%	3.369%	0.022%	2.759%	0.688%	41.548%
B-	17.350%	17.359%	3.364%	0.022%	2.765%	0.689%	41.550%
B₅⁰bar	3.355%	3.362%	0.652%	0.004%	0.545%	0.144%	8.062%
B _c -	0.022%	0.022%	0.004%	0.00003%	0.004%	0.001%	0.052%
Λ_{b}	2.762%	2.762%	0.543%	0.004%	0.451%	0.121%	6.644%
others	0.653%	0.655%	0.136%	0.001%	0.119%	0.579%	2.144%
all	41.503%	41.511%	8.068%	0.053%	6.641%	2.225%	100%

by WHIZARD195

$Z \rightarrow c\bar{c}$ Percentage of c hadrons (c jet vs \bar{c} jet)

percent cbar jet → c jet ↓	D-	D ⁰ bar	D _s -	∧ _c -	others	all
D+	4.654%	13.302%	1.717%	1.444%	0.529%	21.532%
D ⁰	13.290%	37.933%	4.887%	4.110%	1.122%	61.342%
D _s +	1.712%	4.894%	0.631%	0.533%	0.159%	7.929%
Λ_{c} +	1.442%	4.111%	0.533%	0.449%	0.141%	6.676%
others	0.402%	1.066%	0.148%	0.135%	0.656%	2.521%
all	21.500%	61.306%	7.916%	6.671%	2.607%	100%

by WHIZARD195

b/c hadron multiplicity

Num_B bbar jet → b jet ↓	0	1	2	3	Num_C cbar jet → c jet ↓	0	1	2	3	
0	0.02%	1.25%	0.61%	1E-05	0	0.02%	1.24%	0.76%	6E-05	
1	1.25%	96.08%	0.03%	0.05%	1	1.24%	94.74%	0.03%	0.46%	
2	0.61%	0.03%	0.03%	2E-07	2	0.75%	0.03%	0.21%	6E-05	
3	8E-06	0.05%	3E-07	2E-07	3	6E-05	0.46%	5E-05	2E-05	
82.49	« decaye	ed to lea	ding par	rticle	66.2% decayed to leading particle					

by WHIZARD195

Effective Tagging Power of different b hadrons combination

Total Effective Tagging Power = $(13.716 \pm 0.014)\%$

effective tagging power	B ₀	B+	B _s 0	B _c +	∧bar
B ⁰ bar	8.403	15.213	3.775	8.961	22.144
	±0.026	±0.037	±0.037	±0.768	±0.110
B-	15.137	22.434	9.500	16.784	30.450
	±0.047	±0.062	±0.063	±1.071	±0.134
B₅⁰bar	3.730	9.673	0.382	3.406	14.756
	±0.037	±0.063	±0.024	±0.954	±0.187
B _c -	8.639 ±0.732	15.817 ±1.063	1.061 ±0.495	_	25.021 ±3.309
۸b	22.224	30.313	14.518	26.729	40.840
	±0.110	±0.134	±0.186	±3.322	±0.3915

Effective Tagging Power of different c hadrons combination

Total Effective Tagging Power = $(30.116 \pm 0.022)\%$

effective tagging power	D-	Dºbar	D _s -	∧ _c -
D+	27.184	30.702	22.353	35.202
	±0.098	±0.062	±0.144	±0.200
D0	30.644	33.779	25.816	37.813
	±0.062	±0.039	±0.093	±0.124
D _s +	22.287	25.670	18.006	30.236
	±0.144	±0.093	±0.204	±0.298
∧ _c +	. 35.135		29.543	42.924
	±0.200		±0.295	±0.395

$Z \rightarrow b\bar{b}$ Effective Tagging Power of B Hadrons

Total Effective Tagging Power = 12.736%

Total Effective Tagging Power = 13.716%

% bbar jet → b jet ↓	B ₀	B+	B _s 0	B _c +	Λ_b bar	% bbar jet → b jet ↓	B ⁰	B+	Bs ⁰	B _c +	∧₀bar
B ⁰ bar	7.792	14.044	3.491	8.346	20.179	B ⁰ bar	8.403	15.213	3.775	8.961	22.144
B-	13.965	20.604	8.734	14.568	27.854	B-	15.137	22.434	9.500	16.784	30.450
B₅⁰bar	3.486	8.882	0.363	3.046	13.346	B₅⁰bar	3.730	9.673	0.382	3.406	14.756
B _c -	7.820	14.426	0.774	-	23.294	B _c -	8.639	15.817	1.061	-	25.021
Λ_{b}	20.268	27.788	13.064	22.841	37.460	۸ _b	22.224	30.313	14.518	26.729	40.840

charge verse

$Z \rightarrow c\bar{c}$ Effective Tagging Power of C Hadrons

Total Effective Tagging Power = 28.214%

Total Effective Tagging Power = 30.116%

% cbar jet → c jet ↓	D-	Dºbar	D _s -	∧ _c -	% cbar jet → c jet ↓	D-	Dºbar	D _s -	∧ _c -
D+	25.605	28.561	21.514	32.280	D+	27.184	30.702	22.353	35.202
D0	28.544	31.285	24.395	34.759	D0	30.644	33.779	25.816	37.813
D _s +	21.452	24.252	17.423	28.135	D _s +	22.287	25.670	18.006	30.236
Λ_{c}^{+}	32.148	34.849	27.635	39.511	Λ_{c}^{+}	35.135	37.930	29.543	42.924

charge verse

$Z \rightarrow b\bar{b}$ Weighted Effective Tagging Power of B Hadrons

Total Effective Tagging Power = 12.736%

Total Effective Tagging Power = 13.716%

% bbar jet → b jet ↓	B ₀	B+	₿s ⁰	B _c +	∧₀bar	% bbar jet → b jet ↓	B ⁰	B+	B₅ ⁰	B _c +	∧₀bar
B ⁰ bar	1.353	2.437	0.118	0.002	0.557	B ⁰ bar	1.459	2.640	0.127	0.002	0.611
B-	2.423	3.577	0.294	0.003	0.770	B-	2.627	3.895	0.320	0.004	0.842
B₅⁰bar	0.117	0.299	0.002	0.0001	0.073	B₅⁰bar	0.125	0.325	0.003	0.0001	0.080
B _c -	0.002	0.003	0.00003	-	0.0008	Bc⁻	0.002	0.003	0.00005	-	0.0009
Λ_{b}	0.560	0.768	0.071	0.0008	0.169	Λ_{b}	0.614	0.837	0.079	0.001	0.184

charge verse

$Z \rightarrow c\bar{c}$ Weighted Effective Tagging Power of C Hadrons

Total Effective Tagging Power = 28.214%

Total Effective Tagging Power = 30.116%

% cbar jet → c jet ↓	D-	Dºbar	D _s -	∧ _c -	% cbar jet → c jet ↓	D-	Dºbar	Ds-	∧ _c -
D+	1.192	3.800	0.370	0.466	D+	1.265	4.085	0.384	0.508
D0	3.794	11.870	1.1925	1.429	D ⁰	4.074	12.817	1.262	1.554
D _s +	0.367	1.187	0.110	0.150	D _s +	0.382	1.257	0.114	0.161
Λ_{c}^{+}	0.464	1.433	0.147	0.177	∧ _c +	0.507	1.560	0.157	0.193

charge verse

Misjudgment rate ω of $\{e, \mu, K\}$ $\{e, \mu, K\}$

Total Misjudgment rate $\omega = 11.73\%$

Total Misjudgment rate $\omega = 9.20\%$

% bbar jet → b jet ↓	B ₀	B+	B _s 0	B _c +	Λ_b bar	% bbar jet → b jet ↓	B ⁰	B+	Bs ⁰	B _c +	∧₀bar
B ⁰ bar	16.73	9.42	27.80	12.80	10.51	Bºbar	14.74	6.55	29.20	7.22	8.67
B-	9.51	5.09	17.08	9.55	5.78	B-	6.62	2.74	14.74	3.77	3.89
B₅⁰bar	28.07	16.59	43.62	36.21	19.09	B₅⁰bar	29.29	14.41	50.47	27.27	19.61
Bc⁻	19.74	7.30	46.81	-	11.43	Bc⁻	14.56	4.63	50.00	-	18.18
$\Lambda_{ m b}$	10.63	5.52	19.20	3.85	6.11	$\Lambda_{\rm b}$	8.99	3.59	19.80	0	4.80

All b hadrons

b hadrons that decayed to leading particles

Misjudgment rate ω of $\{e, \mu, K\}$

Total Misjudgment rate $\omega = 4.03\%$

Total Misjudgment rate $\omega = 1.11\%$

% cbar jet → c jet ↓	D-	D ⁰ bar	D _s -	∧ _c -	% cbar jet → c jet ↓	D-	Dºbar	D _s -	∧ _c -
D+	4.53	2.98	12.90	8.50	D+	1.80	0.55	11.78	4.16
D0	3.03	2.05	8.80	6.29	D ⁰	0.57	0.17	4.08	1.26
D _s +	12.64	9.13	31.45	21.65	D _s +	11.87	4.32	51.86	25.84
Λ_{c}^{+}	8.32	5.96	23.37	15.07	∧ _c +	4.27	1.37	26.06	10.57

All c hadrons

c hadrons that decayed to leading particles

Correlation of b jet and \bar{b} jet

σ bbar jet → b jet ↓	Bo	B+	B _s 0	B _c +	∧bar	
B ⁰ bar	12.475	11.195	4.459	0.612	0.069	
B-	11.216	11.930	3.359	0.670	1.456	Residual
B₅⁰bar	1.424	2.830	30 0.749 -0.185	-0.185	4.988	Uncertainty
B _c -	-0.658	-0.598	-0.181	0.200	0.537	
٨b	0.848	0.829	3.774	0.537	5.644	

$Z \rightarrow c\bar{c}$ Correlation Measurement of c hadrons of c jet and \bar{c} jet

percent cbar jet → c jet ↓	D-	Dºbar	D _s -	
D+	4.898	13.006	4.039	Residual
Do	11.554	27.343	5.356	Uncertainty
D _s +	2.389	6.724	1.483	

Commonly Used

```
ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ
αβγδεζηθικλμνξοπρστυφχψω
A_{FB}\sin^2\theta_W
Z \rightarrow b\bar{b} Z \rightarrow c\bar{c}
b jet \overline{b} jet
c jet \overline{c} jet
e^{-}, \mu^{-}, K^{-}, \pi^{-}, p^{+}
e^+, \mu^+, K^+, \pi^+, p^-
(e, \mu, K) (\pi, proton)
\bar{B^{0}} B^{0} B^{-} B^{+} \bar{B_{s}^{0}} B_{s}^{0} B_{c}^{-} B_{c}^{+} \Lambda_{b} \bar{\Lambda_{b}}
D^0 D^0 D^+ D^- D^0_{s} D^0_{s} \Lambda^+_{c} \Lambda^-_{c}
Misjudgment rate \omega, Effective tagging power
```