Group Meeting Monojet Search for Heavy Neutrino at Future Z-Factory

Yin-Fa Shen

School of Physics, Huazhong University of Science and Technology

1 / 11

華中科技大学 ;

Yin-Fa Shen

October 31, 2022

Group Meeting

Introduction

Process

Simulation

Result

Summarize

Acknowledgement

華中科技大学 ;

Introduction

- The neutrino oscillation implies that the neutrino has non-zero but tiny mass compared to other kinds of elementary fermions.
- For the sake of naturalness, a right-handed Majorana mass term has been suggested to be added into the neutrino sector:

$$\mathcal{L}_{\nu} \ni \frac{1}{2} i \bar{R}_i^c \partial R_i - y_{ij} \bar{R}_i \tilde{\Phi} L_j - \frac{1}{2} (M_N)_{ij} \bar{R}_i^C R_j + h.c.$$
(1)

• After diagonalizing the mass matrix, the mass eigenvalues might be adjusted suitably through the Majornana mass M_N in a way.

Introduction

- In such model, two kinds of important parameters are introduced: the Majornana mass M_N and the mixing parameters $V_{\ell N}$ which will *suppress* the interaction with W boson.
- Considering current experimental results (JHEP 03 (2020) 170), we mainly focus on the mass range: $M_N \sim \mathcal{O}(10 \text{ GeV})$.

Process

• At future Z-factory, the heavy neutrino are mainly produced through the decay of the *on-shell* Z boson, and can be completely reconstructed by the decay channel as shown below:

Process

• For heavy neutrino in such mass range $(M_N \sim \mathcal{O}(10 \text{ GeV}))$, it is relative lighter than Z boson $(M_Z = 91.2 \text{ GeV})$, hence the *boost* of it will be relative larger, and the two quarks can "see" each other, to form a *monojet*.

Simulation

- We performed Monte-Carlo simulation, and found that the decay products of heavy neutrino indeed always form a monojet as expected.
- Such character will be useful for distinguishing signal from background.

Figure 1: Simulation of a representative signal. The left figure is in the ϕ -plane while the right one is 3D situation.

Simulation

- We found that the main background comes form $e^-e^+ \to \tau \bar{\tau}$ events.
- For excluding such background more, we analyzed the monojet's substructure and observed some interesting features: it always contains one hard charged lepton, and has a special energy (momentum) distribution as shown below.

Result

- We finally use the above selection conditions to distinguish the signal from background. In our estimation, about 99% background events will be excluded, while 50% signal will survive.
- We also estimate the upper bound of the mixing parameter $V_{\ell N}$ at 95% confidence level. The results are shown below.

Summarize

- Therefore, we have analyzed the features of heavy neutrino with such mass range produced at Z factory, and conclude that the sensitivity to the mixing parameters $|V_{\ell N}|^2$ could reach approximately $\mathcal{O}(10^{-7})$ even with a conservative integrated luminosity, improving the current direct experimental searches by one to two orders of magnitude.
- For more details, please note the paper:
 - Eur.Phys.J.C 82 (2022) 5, 398
 - arXiv: 2201.05831
- This project is finished through the collaboration with Jian-Nan Ding (LZU) and my advisor Prof. Qin Qin.
- We are also grateful to Manqi Ruan for his enthusiastic discussion and encouragement

Acknowledgement

Thank You

