Electroweak Phase Transition in 2HDM under Higgs, Z-pole, and W precision measurements

Huayang Song

Institute of Theoretical Physics

Based on JHEP 10 (2022) 048 (HS, W. Su, and M. Zhang)

CDF II W Boson Mass

In April 2022, the CDF collaboration released a new measurement of the mass of the *W* boson with the most precise to date, standing 7σ from the SM prediction

Explanations?

- 1. An understanding of experimental assumptions and calibrations is important for theorists, and comparative studies are needed for other experimental measurements.
- 2. Accepting the CDF II result at face value, it must a clear hint of new physics.

$$\Delta m_W^2 = \frac{\alpha c_W^2 m_Z^2}{c_W^2 - s_W^2} \left[-\frac{\mathcal{S}}{2} + c_W^2 \mathcal{T} + \frac{c_W^2 - s_W^2}{4s_W^2} \mathcal{U} \right] > 0$$

within the electroweak (EW) sector in terms of the oblique parameters S, T and U

 \rightarrow Indicates a sizable T, mass splitting in NP (SFOEWPT)

consistent with EW, Higgs data, further?

Mini-review of 2HDM

We consider a CP conserving two-Higgs-doublet model scalar potential with a softly broken Z_2 symmetry to inhibit tree-level flavor changing neutral currents

Two Higgs Doublet Model:

$$V^{0}(\Phi_{1},\Phi_{2}) = m_{11}^{2}\Phi_{1}^{\dagger}\Phi_{1} + m_{22}^{2}\Phi_{2}^{\dagger}\Phi_{2} - m_{12}^{2}\left(\Phi_{1}^{\dagger}\Phi_{2} + h.c.\right) + \frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)^{2} + \frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger}\Phi_{2}\right)^{2} + \lambda_{3}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)\left(\Phi_{2}^{\dagger}\Phi_{2}\right) + \lambda_{4}\left(\Phi_{1}^{\dagger}\Phi_{2}\right)\left(\Phi_{2}^{\dagger}\Phi_{1}\right) + \frac{\lambda_{5}}{2}\left[\left(\Phi_{1}^{\dagger}\Phi_{2}\right)^{2} + h.c.\right]$$

$\begin{pmatrix} \phi^+ \end{pmatrix}$	$v_{\rm e}^2 + v_{\rm d}^2 = v^2 = (246 {\rm GeV})^2$		Φ_1	Φ_2
$\Phi_i = \begin{pmatrix} \varphi_i \\ (v_i + \phi_i^0 + iG_i)/\sqrt{2} \end{pmatrix}$	$\tan \beta = v_u / v_d$	Type I	u, d, ℓ	
		Type II	и	d,ł
H^0 $\left(\cos \alpha \sin \alpha \right) \left(\phi_1^0 \right)$	$A = -G_1 \sin\beta + G_2 \cos\beta$	Lepton-specific	u,d	ł
$h^0 \int \left(-\sin\alpha \cos\alpha \int \left(\phi_2^0 \right) \right)$	$H^{\pm} = -\phi_1^{\pm} \sin\beta + \phi_2^{\pm} \cos\beta$	Flipped	и, l	d

Input Parameters

 $m_{11}^2, m_{22}^2, m_{12}^2, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5 \longrightarrow v, \tan\beta, \cos(\beta - \alpha), m_{12}^2, m_h, m_H, m_A, m_{H^{\pm}}$

Theoretical constraints on 2HDM

• Vacuum stability, potential bounded from below

$$\lambda_1 > 0, \ \lambda_2 > 0, \ \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \ \lambda_3 + \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}$$

- **Perturbativity**, couplings are perturbative $|\lambda_i| \le 4\pi$
- Tree-level unitarity, bounds on combinations of λ_i

$$\begin{aligned} \left| 3(\lambda_1 + \lambda_2) \pm \sqrt{9(\lambda_1 - \lambda_2)^2 + 4(2\lambda_3 + \lambda_4)^2} \right| < 16\pi , \\ \left| (\lambda_1 + \lambda_2) \pm \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_4^2} \right| < 16\pi , \\ \left| (\lambda_1 + \lambda_2) \pm \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_5^2} \right| < 16\pi , \\ \left| \lambda_3 + 2\lambda_4 \pm 3\lambda_5 \right| < 8\pi , \ \left| \lambda_3 \pm \lambda_4 \right| < 8\pi , \ \left| \lambda_3 \pm \lambda_5 \right| < 8\pi \end{aligned}$$

Theoretical constraints on 2HDM

How to understand these constraints?

Use relations between quartic couplings and the physical masses

Theoretical constraints on 2HDM

How to understand these constraints?

Use relations between quartic couplings and the physical masses

$$\begin{split} v^{2}\lambda_{1} &= m_{h}^{2} - \frac{t_{\beta}\left(m_{12}^{2} - m_{H}^{2}s_{\beta}c_{\beta}\right)}{c_{\beta}^{2}} + \left(m_{h}^{2} - m_{H}^{2}\right)\left[c_{\beta-\alpha}^{2}\left(t_{\beta}^{2} - 1\right) - 2t_{\beta}s_{\beta-\alpha}c_{\beta-\alpha}\right] \\ \vdots \\ v^{2}\lambda_{5} &= m_{H}^{2} - m_{A}^{2} - \frac{m_{12}^{2} - m_{H}^{2}s_{\beta}c_{\beta}}{s_{\beta}c_{\beta}} \\ \hline \mathbf{Theoretical Constraints :} \\ \lambda v^{2} &< 4\pi v^{2}, \\ max\{\tan\beta, \cot\beta\} \lesssim \sqrt{(8\pi v^{2})/(3\lambda v^{2})}, \\ m_{H^{\pm}}^{2} - m_{H}^{2} \lesssim \mathcal{O}\left(4\pi v^{2} - \lambda v^{2}\right), \\ m_{H^{\pm}}^{2} - m_{H}^{2} \lesssim \mathcal{O}\left(4\pi v^{2} - \lambda v^{2}\right). \end{split}$$

Z-pole constraints on ZHDM

In the framework of the global EW fit (Z-pole observables), the W boson mass can be predicted. Within the EW sector, the NP in the BSM can be parameterized in terms of the oblique parameters S, T and U.

Z-pole constraints on 2HDM

Z-pole physics at LEP impose strong constraints on oblique parameters (on the 2HDM)

	Current				CEPC			FCC-ee			ILC					
	σ		correla	tion	σ	correlation		σ	correlation		σ		correlation			
	0	S	T	U	(10^{-2})	S		U	(10^{-2})	S			(10^{-2})	S	T	U
S	0.04 ± 0.11	1	0.92	-0.68	1.82	1	0.9963	-0.9745	0.370	1	0.9898	-0.8394	2.57	1	0.9947	-0.9431
T	0.09 ± 0.14	-	1	-0.87	2.56	-	1	-0.9844	0.514	-	1	-0.8636	3.59	_	1	-0.9569
U	-0.02 ± 0.11	-	—	1	1.83	-	-	1	0.416	-	-	1	2.64	_	-	1

Hierarchical ZHDM to Solve M, Anomaly

The W boson mass can be expressed in terms of STU as $m_W^{2\text{HDM}} = m_W^{\text{SM}} \left[1 + \frac{\alpha c_W^2}{2(c_W^2 - s_W^2)} T(1 + \delta \rho^{2\text{HDM}}) + \frac{\alpha}{8s_W^2} U - \frac{\alpha}{4(c_W^2 - s_W^2)} S \right]$ where $\delta \rho^{2\text{HDM}} \sim \frac{|\lambda_{hhh}^{2\text{HDM}}|^2}{12\pi^2 m_h^2}$ charactrizes higher order 2HDM effects from enhanced Higgs boson self-interactions. Given the current constraint on $\kappa_{hhh} = \lambda_{hhh}^{2\text{HDM}} / \lambda_{hhh}^{\text{SM}}$ is between (-1.0, 6.6), $\delta \rho^{2\text{HDM}}$ is only $\mathcal{O}(0.01)$, which can be neglected.

Hierarchical ZHDM to Solve M, Anomaly

How to understand?

Notice that the mass shift and T plot have same features, U is neglectable

$$T \xrightarrow{\text{alignment}} \frac{1}{16\pi s_w^2 c_w^2 m_z^2} \left[F\left(m_{H^{\pm}}^2, m_A^2\right) + F\left(m_{H^{\pm}}^2, m_H^2\right) - F\left(m_A^2, m_H^2\right) \right]$$
$$\approx \frac{1}{12\pi s_w^2 c_w^2 m_z^2} \Delta m_C (\Delta m_C - \Delta m_A) + \mathcal{O}(\Delta m^3)$$

what Else Does Hierarchical Spectrum Buy US?

Let's examine the electroweak phase transition in 2HDM

Thermal corrected effective potential

$$V(\phi_1, \phi_2, T) = V^0(\phi_1, \phi_2) + V^{CW}(\phi_1, \phi_2) + V^{CT}(\phi_1, \phi_2) + V^{T}(\phi_1, \phi_2, T)$$

The strength of the electroweak phase transition is quantified by $\xi_c = v_c/T_c$, where T_c is critical temperature of the phase transition, and v_c is the VEV of the broken minimum at this temperature. To have a strong enough phase transition to account for baryogenesis, $\xi_c \gtrsim 1$ (we relax this to 0.9 to accout for the theoretical uncertainty).

In high temperature limit

$$V(\phi_h, T) \approx (DT^2 - \mu^2)\phi_h^2 - ET\phi_h^3 + \frac{\tilde{\lambda}}{4}\phi_h^4 \longrightarrow \xi_c \equiv \frac{v_c}{T_c} \approx \frac{2E}{\tilde{\lambda}}$$

in 2HDM $E = \frac{1}{12\pi} \left[6\frac{m_W^3}{v^3} + 3\frac{m_Z^3}{v^3} + \frac{m_h^3}{v^3} \right] + E_{(H/A/H^{\pm})} \qquad \text{contributions from the}$
 $-\frac{1}{12\pi}T(m_{\alpha}^2(\phi_h))^{3/2} = -\frac{1}{12\pi}T(M^2 + \lambda_{\alpha}\phi_h^2)^{3/2}$
 $\approx \begin{cases} -\frac{T}{12\pi}\lambda_{\alpha}^{3/2}\phi_h^3, & M^2 \ll \lambda_{\alpha}\phi_h^2 \\ -\frac{T}{12\pi}M^3\left(1 + \frac{3}{2}\frac{\lambda_{\alpha}\phi_h^2}{M^2}\right), & M^2 \gg \lambda_{\alpha}\phi_h^2 \end{cases} \longrightarrow E_{(\alpha)} \approx \begin{cases} \frac{1}{12\pi}\lambda_{\alpha}^{3/2} = \frac{1}{12\pi}\frac{m_{\alpha}^3}{v^3}, & M^2 \ll \lambda_{\alpha}\phi_h^2 \\ 0, & M^2 \gg \lambda_{\alpha}\phi_h^2 \end{cases}$

what Else Does Hierarchical Spectrum Buy US?

High temperature limit analysis indicates SFOEWPT prefers a nondegenerate mass spectrum in 2HDM.

The previous studies showed that the amount by which the VEV is "uplifted" with respect to the SM case, $\Delta \mathcal{F}_0 / |\mathcal{F}_{SM}| \equiv (\mathcal{F}_0 - \mathcal{F}_{SM}) / |\mathcal{F}_{SM}|$, constitutes a good indicator of the increase in the strength of the EWPT.

Other constraints on 2HDM

- Direct searches on non-SM Higgses at LEP and LHC
- Flavor physics constraints
 Constraints on the masses of non-SM Higgses
- Higgs precision measurements

Complementary to Z-pole observables and also constrain the mass splitting

Other constraints on 2HDM

Current constraints from LHC Run-II, including Higgs physics

Our Study

We perform a 6 parameters random scan for both Type-I and -II

$$\begin{split} &\tan\beta\in(0.2,50), |\cos(\beta-\alpha)|<0.5\,,\quad m_{A/H^\pm}\in(10,1500)~{\rm GeV}\,,\\ &m_{12}^2\in(0,1500^2)~{\rm GeV}^2, \qquad \qquad m_H\in(130,1500)~{\rm GeV}. \end{split}$$

with in total 1 billion points.

After considering various theoretical and experimental constraints, 1 million points are left; and further requiring a SFOEWPT, a few thousands of points allowed for Type-I (much less for Type-II) are shown, whose statistic is sufficient.

Huayang Song

Results for Type-1

Huayang Song

Results for Type-11

Summary of Results

Type-I:

 $m_H \in (125, 950) \text{ GeV}, \Delta m_{A/C} \in (-400, 400) \text{ GeV}, \tan \beta \in (1, 50)$

2 regions $\Delta m_C > 0 \& \Delta m_C > \Delta m_A$ $\Delta m_A = 0 \text{ is possilbe}$ $\Delta m_C < 0 \& \Delta m_C < \Delta m_A$

Type-II:

 $m_H \in (125, 900) \text{ GeV}, \Delta m_{A/C} \in (-200, 300) \text{ GeV}, \tan \beta \in (1, 10)$

2 regions $\Delta m_C > 0 \& \Delta m_C > \Delta m_A$ $\Delta m_{A/C} \neq 0$ $\Delta m_C < 0 \& \Delta m_C < \Delta m_A$

Direct Searches via Exotic Higgs Decays

The mass splitting gives extra decay channels for the non-SM Higgses which might suppress the traditional search channels via di-boson or di-fermion final state. Also notice that $g_{HVV} \propto \cos(\beta - \alpha) \sim 0$ in alignment limit.

HS, S. Su, and W. Su

conclusion

- 1. A hierarchical mass spectrum in 2HDM can explain CDF II m_W
- 2. SFOEWPT also favors a non-SM Higgs mass splitting, and gives a mass limit ($m_H \lesssim 1$ TeV)
- 3. Higgs precision measurements are sensitive to the mass splitting
- 4. Future precision measurements at CEPC, ILC, or FCC-ee can test hierarchical 2HDM, no deviation to SM observed at Higgs physics may lead to tension with CDF II m_W
- 5. Hadron colliders can explore almost all parameter space of hierarchical 2HDM via exotic Higgs decay channel

