

The 2022 international workshop on CEPC

The ALP explanation to muon g-2 and its test at CEPC

Xiao-Ping Wang (王小平) Nov, 27 @ CEPC

Base On: arXiv:2210.09335

Introduction to g-2

Anomalous magnetic moment definition:

$$\overrightarrow{\mu} = g \frac{e}{2m} \overrightarrow{s} \quad a = \frac{g-2}{2}$$

In Quantum Field Theory (with C, P invariance) k = p' - p

Introduction to g-2

•
•
•
•
•
•

What's the running in the loop?

Total anomaly can be written as:

Introduction to g-2

The magnetic moment from such a loop enter as functions of:

$$a_{\ell} \sim f[\frac{m_{\ell}^2}{M^2}]$$

Muon is more sensitive than electron in sensing a heavy unknown particle:

$$\frac{m_{\mu}^2}{m_e^3} \simeq 43000$$

But τ is so short-lived (10⁻¹³seconds) that no practical experiment can be designed with the current technology, current experimental bound is

 $-0.052 < a_\tau < 0.013$

Even the sign is not known experimentally!!! This leaves us with the only choice μ.

The Muon g-2 anomaly

•	•	•	•	•	•	•	•	•	•	•	•	(
٠	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	(
•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	

Standard Model Result (SM)

$$\begin{aligned} a^{\rm SM}_{\mu} &= a^{\rm QED}_{\mu} + a^{\rm weak}_{\mu} + a^{\rm had}_{\mu} \\ &\times 10^{-10} \end{aligned}$$

QED Contribution 11 658 471.895 (0.015) Aoyama et al (5-loop) 15.4 (0.1) **EW** Contribution Grendiger et al (Higgs mass) Hadronic Contribution 694.9(4.3)**LO** hadronic HLMNT11 -9.8(0.1)HLMNT11 **NLO** hadronic 10.5(2.6) Prades, de Rafael & Light-by-light Theory Total 11659182.3(4.9)

The Muon g-2 anomaly

Positive value and a 4.2 σ (Fermilab + Brookhaven)

 $\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{\th} = (25.1 \pm 5.9) \times 10^{-10}$

Physics ABOUT BROWSE PRESS COLLECTIONS

Q Search articles

The Era of Anomalies

May 14, 2020 • Physics 13, 79

Particle physicists are faced with a growing list of "anomalies"-experimen standard model but fail to overturn it for lack of sufficient evidence.

ON THE COVER

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm April 7, 2021

New muon magnetic moment data from a Fermilab experiment (red) combined with previous Brookhaven National Lab data (blue) is in 4.20 tension with the value calculated by the Muon g-2 Theory Initiative (green). Selected for a Viewpoint in Physics and an Editors' Suggestion.

B. Abi et al. (Muon g - 2 Collaboration) Phys. Rev. Lett. 126, 141801 (2021)

Issue 14 Table of Contents More Covers Yannis K. Semertzidis, IBS-CAPP and KAIST

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Press

The (pseudo)scalar Yukawa coupling to lepton

$$\mathscr{L}_{\text{yuk}} = \phi \bar{\ell} \left(g_R + i g_I \gamma_5 \right) \ell$$

The 1-loop contribution to g-2

$$\Delta a_{\ell} = \frac{1}{8\pi^2} \int_0^1 dx \frac{(1-x)^2 \left((1+x)g_R^2 - (1-x)g_I^2\right)}{(1-x)^2 + x \left(m_{\phi}/m_{\ell}\right)^2}$$

• For scalar,
$$\Delta a_{\ell} > 0$$

• For (psudo)scalar, $\Delta a_{\ell} < 0$

Further requirement for pseudo-scalar

$$\mathscr{L} = \frac{1}{4} g_{a\gamma\gamma} \tilde{F}F + i y_{a\psi} a \bar{\psi} \gamma_5 \psi$$

• Assumes $g_{a\gamma\gamma}$ remains essentially constant throughout the integration over virtual photon-loop momentum

 $g_{a\gamma\gamma}$ and $y_{a\ell}$ can adjust its sign to give positive result

• The 3rd diagram subtlety:

- In g-2 solution region, mostly decay to $a \rightarrow \mu^+ \mu^-$
- The inclusion of Z diagram makes some difference for large m_a
- Exotic Z decay should happen

ALP decay

$$\Gamma\left(a \to \mu^{+}\mu^{-}\right) = \frac{m_{a}m_{\mu}^{2}}{8\pi f_{a}^{2}} \left|C_{\mu\mu}^{\text{eff}}\right|^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{m_{a}^{2}}}$$
$$\Gamma(a \to \gamma\gamma) = \frac{\alpha^{2}m_{a}^{3}}{64\pi^{3}f_{a}^{2}} \left|C_{\gamma\gamma}^{\text{eff}}\right|^{2}$$

$$\begin{split} C_{\gamma\gamma}^{\text{eff}} &= C_{\gamma\gamma} + C_{\mu\mu} \left[1 + \frac{m_{\mu}^2}{m_a^2} \cdot \mathcal{F}\left(\frac{m_a^2}{m_{\mu}^2}\right) \right] + \mathcal{O}(\alpha) \\ C_{\mu\mu}^{\text{eff}} &= C_{\mu\mu} + \mathcal{O}\left(\alpha^2\right) \end{split}$$

Branching $a \rightarrow \mu\mu$,ma=5GeV

Existing constraints $C_{ww} = 0$

- Constraining $a \gamma$ coupling only:
 - Belle-II, LEP: $e^+e^- \rightarrow a\gamma \rightarrow (\gamma\gamma)\gamma$
 - LHC: $pp \rightarrow a\gamma \rightarrow (\gamma\gamma)\gamma$

10⁴

Existing constraints $C_{ww} = 0$

- Constraining *a*-μ coupling only:
 - BaBar: recast $e^+e^- \rightarrow \mu^+\mu^- Z'$
 - CMS(4 μ): $pp \rightarrow \mu^+ \mu^- \phi$

Existing constraints $C_{ww} = 0$

- Constraining both coupling
 - CMS($\bar{t}t + 2\mu$): $pp \rightarrow \bar{t}t\phi \rightarrow \bar{t}t(\mu^+\mu^-)$

Searching at CEPC $C_{ww} = 0$

- The exotic Z decay: $Z \rightarrow a + \gamma$ and $Z \rightarrow a + \mu^+ + \mu^-$
- With ALP decay: $a \rightarrow \mu^+ \mu^- / (\gamma \gamma)$
- Relevant SM background: $\mu^+\mu^-\gamma$ and 4μ
 - Cuts: $E_{\gamma} > 2 \text{GeV}, p_T^{\mu} > 5 \text{GeV},$ ullet $|\eta| < 3, \Delta R_{\mu\mu} > 0.1,$ dimuon resolution: $\frac{m_{\mu\mu}}{2} - 1 < 0.19\%$ m_a

 10^{-1}

10⁰

10¹

 $-C_{\mu\mu}/f_a \,[(\text{TeV})^{-1}]$

 10^{2}

10³

 10^{4}

Searching at CEPC $C_{ww} = 0$

The free parameters are

$$\{m_a, C_{\mu\mu}, C_{WW}, C_{BB}\}$$

- Muon g-2 experiments show 4.2σ discrepancy with SM
- ALP can provide a solution with couplings $C_{\mu\mu}$ and $C_{\gamma\gamma}$
- In UV model, $C_{\gamma\gamma}$ comes from C_{WW} and C_{BB} , leads to $C_{\gamma Z}$
- At Z-factory, it leads to exotic Z decay:
 - $Z \rightarrow a\gamma, a\mu^+\mu^-$
 - Future Z factory can provide sensitivity covers most of the g-2 region for $m_a \lesssim m_Z$

