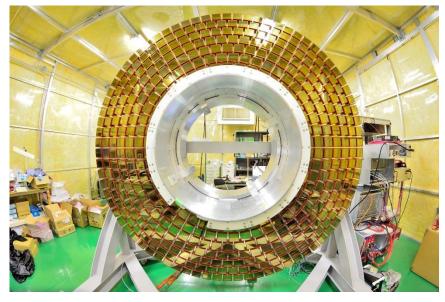


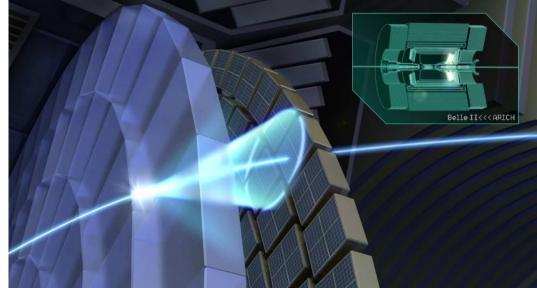
ARICH Detector at Belle II

Shohei Nishida KEK

2022 International Workshop on the High Energy Circular Electron Positron Collider

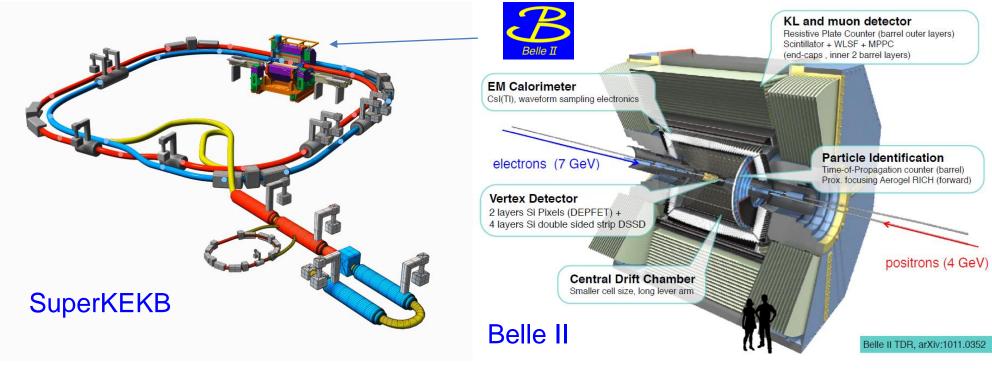
Oct. 27, 2022


Contents

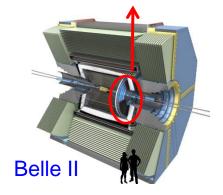


- Introduction
- ARICH Detector at Belle II
- Operation and Performance
- Future Upgrade

KEK, Chiba, Nagoya, Niigata, TMU, Toho (Japan) JSI (Slovenia), LAL (France), AANL (Armenia)

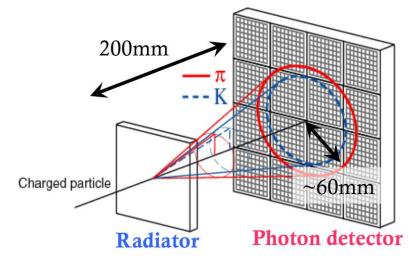


Belle II @ SuperKEKB

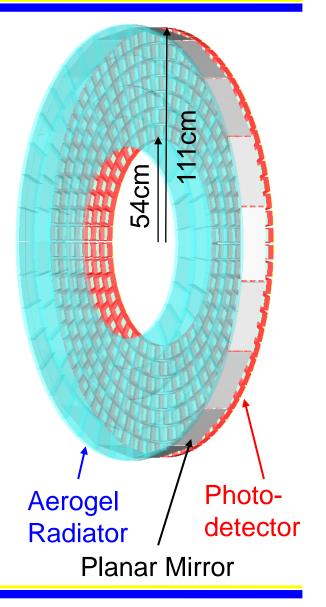

- Belle II experiment at KEK: flavor physics experiment, successor of Belle.
- SuperKEKB Asymmetric electron-positron collider: 4 GeV e⁺ + 7 GeV e⁻.
- Nano beam scheme to achieve high luminosity.
- Operation with full detector started in 2019.
- Luminosity 4.7×10^{34} cm⁻² s⁻¹ achieved so far (aiming one order higher).
- Plan to accumulate 50 ab⁻¹ in ~10 years (50 times of Belle).

Aerogel RICH

Aerogel RICH (ARICH)

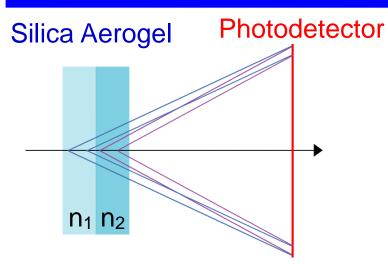


 $\cos \theta_c = \frac{1}{\beta n}$ $= \frac{\sqrt{(m/p)^2 + 1}}{n}$

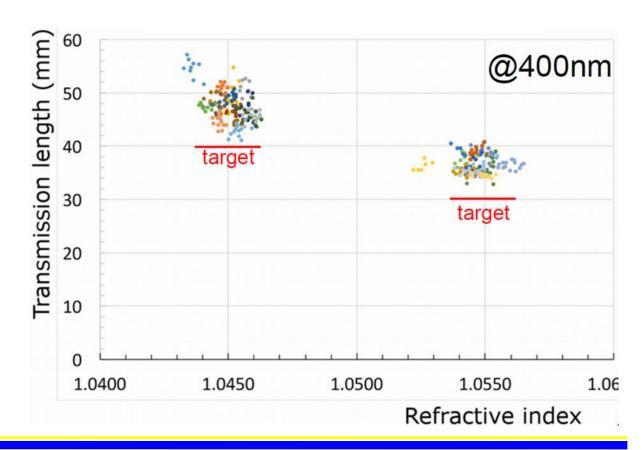

performance:

$$\sigma_{\text{track}} = \frac{\sigma_{\theta}}{\sqrt{N_{p.e.}}}$$

- Ring Imaging Cherenkov Counter (RICH) with aerogel radiator.
- PID device at the forward endcap.
- Replace threshold type Aerogel Cherenkov Counter used in Belle.
- Limited space available
 → proximity-focusing RICH.

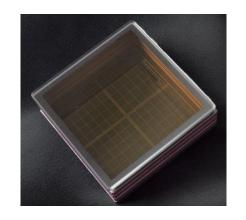

 $\theta_{\rm C}(\pi) - \theta_{\rm C}({\rm K}) \sim 23 \, {\rm mrad}$ (@ 4 GeV; n = 1.05)

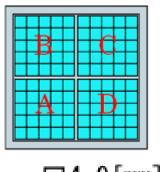
Aerogel Radiator



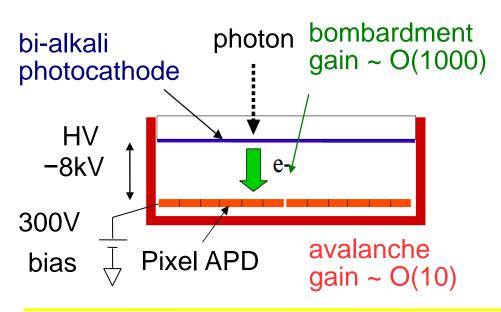
- $n_1 = 1.045$ and $n_2 = 1.055$
- Good transparency (~40mm)
- 248 tiles in total
 - ✓ Cut with water jet from 18cm × 18cm tile.

- Thicker aerogels produce more photons but make angle resolution worse.
- Two layers of aerogels with different indices.
 - Ring images overlap at the photo-detector.




Photodetector

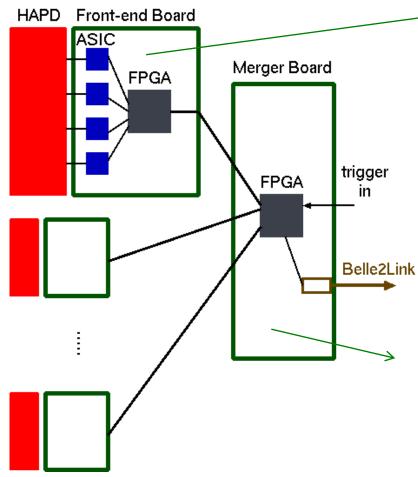
Photodetector


- ~5mm pixel size. Sensitive to single photon
- Large coverage (3 m²).
- Immune to 1.5T magnetic field.
- Radiation tolerance (10¹² cm⁻² neutron).

□4.9[mm]

→ HAPD (Hybrid Avalanche Photo-Detector)

Hybrid: Vacuum tube + semi-conductor


- Developed with Hamamatsu Photonics.
- 144 channels (36-ch APD chip × 4).
- Gain ~ 70000.
- Peak QE ~28%
- Size 73mm × 73mm.
- Effective area 63mm×63mm (65%).

Total 420 HAPDs

Electronics

Front-end Board

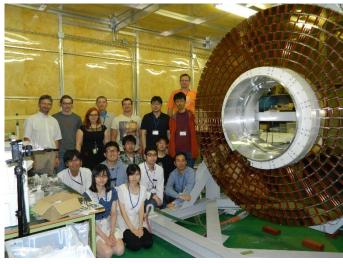
- 4 ASIC + Xilinx FPGA (Spartan6).
- ASIC : preamp + shaper + discriminator.

- Total 60480 channels.
 - ✓ 1-bit ON/OFF information is enough.

Merger

- Receive hitdata from 5-6 front-end boards.
- Zero suppression.
- Send to DAQ.

420 HAPDs + Front-end Boards72 Merger Boards

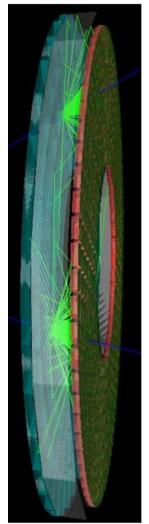


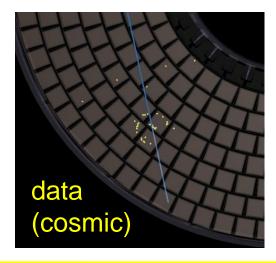
ARICH Status

2017: ARICH installation to Belle II detector.

 2018 Feb-Jun: Belle II commissioning without inner vertex detector (Phase 2).

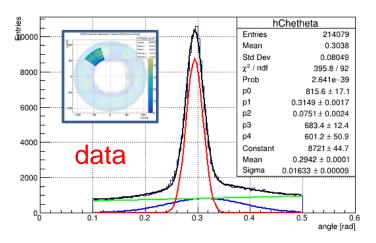
- 2018 Sep-: ARICH hardware modification
- 2019-2022 Jun: Belle II operation with full detector (except PXD 2nd layer)
- 2022 Summer- 2023 : Long Shutdown1 LS1 (for PXD 2nd layer installation).
- 2024-: Resume operation.

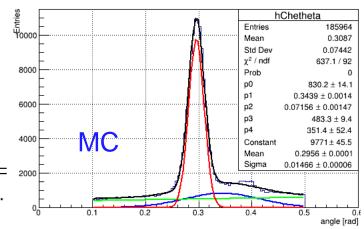



Cherenkov Angle

MC

- Rough performance can be obtained Cherenkov angle (σ_θ) and Number of photons per track (N_{p,e,})
- Distribution with Bhabha sample from the commissioning run (2018).
 - N_{p.e.} = 9.5 (10.4), $σ_θ$ = 16.3 (14.7) mrad in data (MC)
 - ✓ corresponding to 4.3 σ K/ π separation at 4 GeV.

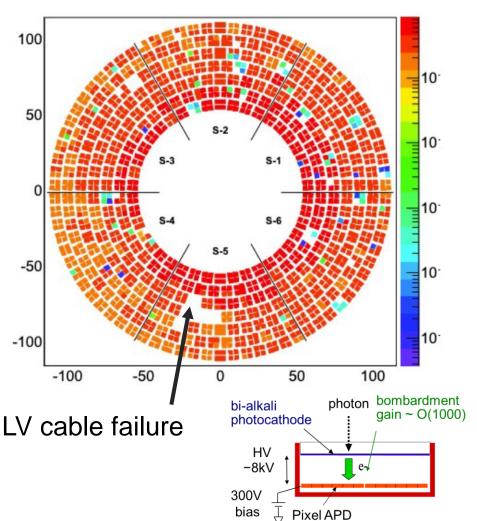



ARICH is working well

performance:

$$\sigma_{\text{track}} = \frac{\sigma_{\theta}}{\sqrt{N_{p.e.}}}$$

Cherenkov Angle distribution (Bhabha, 2018)



HAPDs

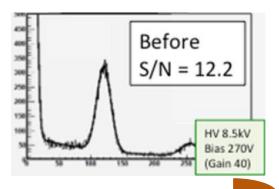
Signal hits / channel / event

Status of HAPD operations in 2022

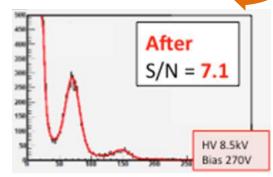
- 5 HAPDs (1.2%) are off due to a problem of LV cable to the front-end electronics.
 - ✓ Fixed in 2022 summer.
- 3% of channels suffer bias (or guard) problem inside APD.
 - ✓ Typically due to sudden increase of leakage current.
- 2% of channels suffer HV problem.
 - ✓ Probably outside of HAPDs.

Total 6% dead

The effect of dead channels to PID performance is very small.

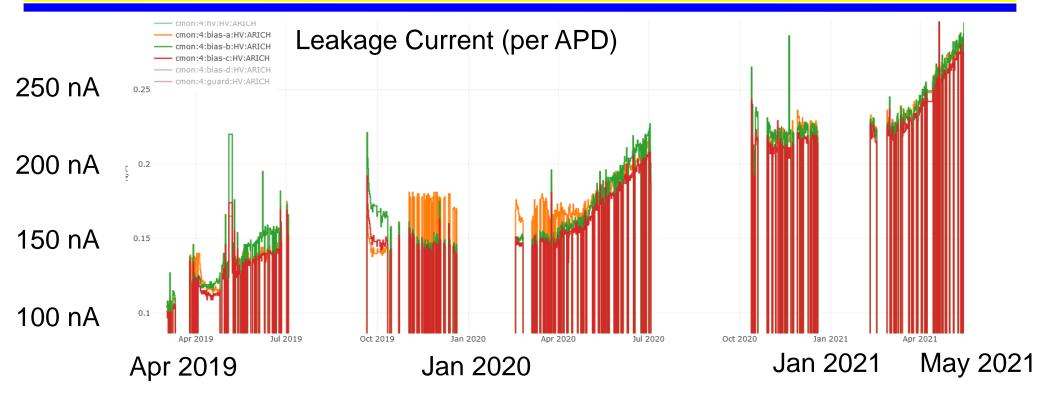



Radiation

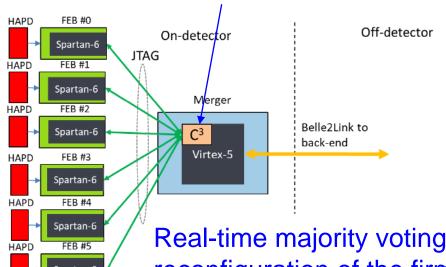


- ARICH operation has been stable. No major problem happened in ARICH.
- ARICH is relatively tolerant to the beam background.
 - ✓ In general, large beam background is an issue to Belle II detector.
- One concern is the neutron radiation.
- Deterioration of HAPDs (increase of the leakage current, larger noise) due to silicon bulk damage by neutrons.
 - ✓ Tolerant to 10¹² neutrons / cm² @ 1MeV equiv., assumed for to 10 years' operation.
 - ✓ Sensor performance will be gradually degraded, with a very modest effect on the PID performance.
- Single event upset in the FPGAs electronics.

neutron irradiation test of HAPD

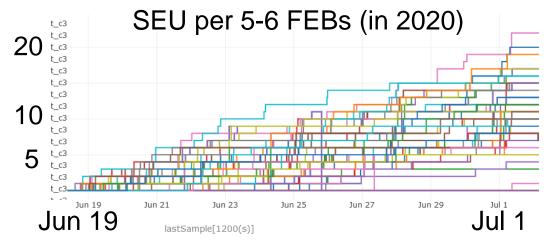


HAPD Leakage Current


- Leakage current of APD (bias) increases at ~ 10-30 nA / months.
- Estimated neutrons ~ $(0.3-1) \times 10^9$ n / cm² / month; 6×10^9 n / cm² till now.
- Below the original expectation (10¹¹ n / cm² / year or 10¹² n / cm² in 10 years' operation)

SEU in the front-end

Another effect from neutrons is SEU (Single Event Upset) in the FPGAs


- Frequent SEUs expected at Spartan 6.
 - ✓ Boron is used as p-type dopant.
 - ✓ old estimation: 8 SEUs / h / HAPD in the firmware.
- Configuration consistency corrector (C³) is implemented in the merger firmware.

Real-time majority voting + partial reconfiguration of the firmware.

[R.Giordano et. al. IEEE Trans. Nucl. Sci. 68. no 12, 2810 (2021) arXiv:2010.16194]

- ~0.5 SEUs / FPGA per day are detected (and fixed).
- DAQ failures possibly due to SUEs happened a few time per month. Maybe an issue in future with

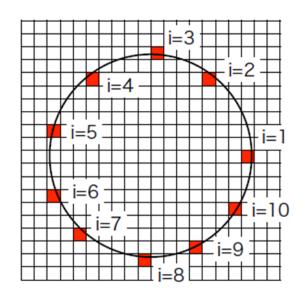
higher luminosity (raidiation).

Particle Identification

Particle Identification (PID) by ARICH is obtained from the comparison of the hit pattern and the expected PDF for different particle hypothesis.

$$\ln \mathcal{L}_h = -N_h + \sum_{\text{hit } i} [n_{h,i} + \ln (1 - e^{-n_{h,i}})]$$

h: particle hypothesis (e, μ , π , K, p,..)

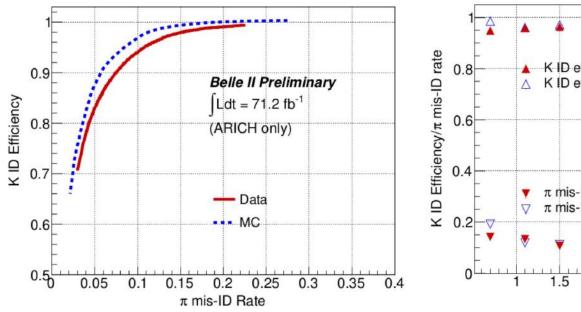

N_h: expected total number of hits

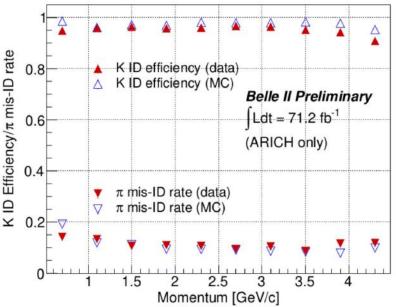
n_{h,i}: expected number of hits (probability) at pixel i

Likelihood ratio

$$R_{K/\pi} = \frac{\mathcal{L}_K}{\mathcal{L}_K + \mathcal{L}_{\pi}}$$

$$R_{\pi/K} = \frac{\mathcal{L}_{\pi}}{\mathcal{L}_K + \mathcal{L}_{\pi}} = 1 - R_{K/\pi}$$

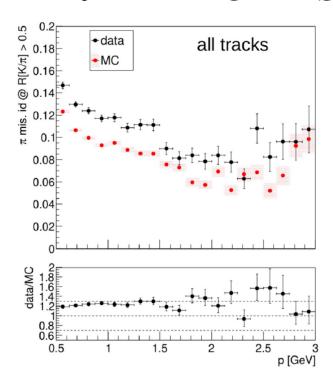

Note: ARICH has only ON/OFF information in each channel (pixel).

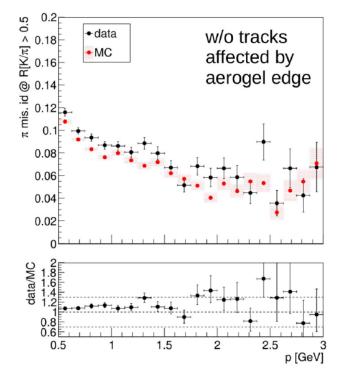


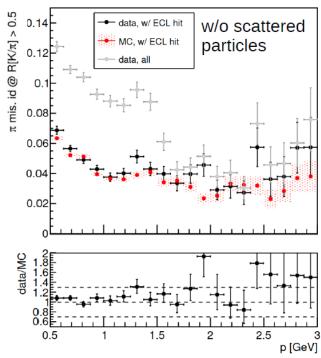
PID Performance

- although good data / MC agreement in Cherenkov angle resolution and number of photons slightly worse PID performance is observed in measured data

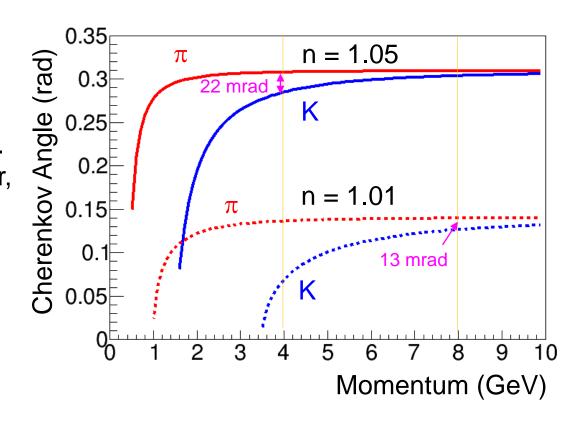
→ ~3% lower kaon id. efficiency is observed in data @ pion misid. rate of 10%


15




PID Performance

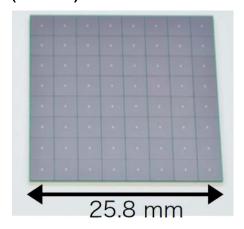
- identified sources of this discrepancy:
- → imperfect description of gaps between the aerogel tiles in the MC (photon loss)
- → misalignment of aerogel tile positions (reality w.r.t. assumed in reconstruction)
- → possible underestimate of amount of material in front of ARICH in MC
- → imperfect other alignments (global, mirrors)



Momentum Range

- Belle II ARICH is optimized to 1-4 GeV (n ~ 1.05).
- If you need cover higher momentum range, you can reduce the refractive index of the aerogels.
 - Cherenkov angle gets smaller, so you need larger distance or better position resolution.
 - ✓ n ~ 1.005-1.01 is minimum;10 GeV looks the maximum.

17



Future Upgrade

- HAPDs are expected to continue to work during 10 years operation at Belle II.
- Additional HAPDs cannot be purchased.
 - ✓ Hard (inconvenient) to treat -8kV HV + 350V bias
- Possible upgrade of photo-detectors around 2030 (?)
- Candidates: HAPD, MPPC (SiPM), LAPPD (MCP based detector)

64 (8 × 8) channel MPPC

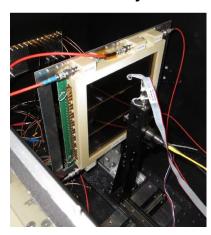
LAPPD (Large Area Picosecond PhotoDetector) : 200mm ×200mm

Future Upgrade

This table is only for the purpose to give a rough idea. The values depend on model numbers; some values are not confirmed.

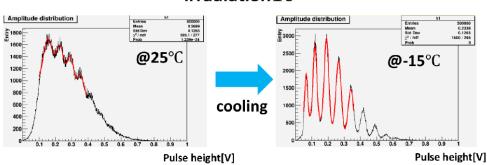
	HAPD	MPPC (SiPM)	LAPPD		
Pad / Position	4.9mm × 4.9mm	3.0mm × 3.0mm	1mm resolution		
PDE	~20% (QE ~ 30%)	~40%	~15% (QE ~ 20%)		
Gain	7 × 10 ⁴	6×10^{6}	~10 ⁷		
Wavelength	200-600 nm	320-900 nm	(200-600 nm)		
Dark Count	~0	~0.5 MHz	<150 Hz / s / cm ²		
Operation voltage	-8kV HV + 350V bias	60V	3kV HV		
Radiation damage	Tolerable at Belle II	Weak	(OK)		

- MPPC (SiPM) has good performance, but radiation tolerance is an issue.
- LAPPD is still under development.


Future Upgrade

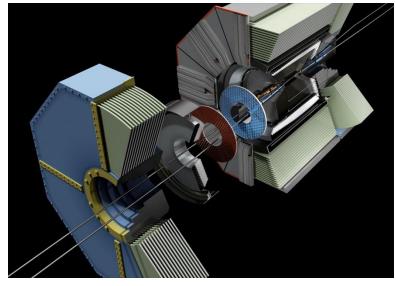
Radiation tolerance is an issue for MPPC

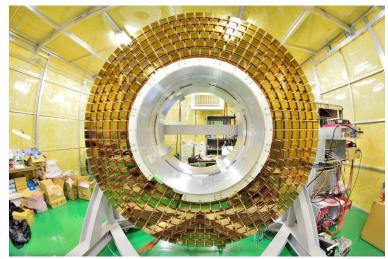
- Neutron irradiation test for MPPC is performed at J-PARC MLF in 2020.
- Single photon cannot be measured after 10¹⁰ n
 / cm² (@ 1 MeV equiv), while 10¹² are expected
 for 10 years operation at Belle II.
- Cooling is necessary (but not studied yet).


test of LAPPD just started

irradiation 10¹⁰

neutron beam


At this stage, we still don't have clear strategy for photon detector upgrade.



Summary

- ARICH: a proximity focusing RICH detector with aerogel, for the PID in the forward endcap at Belle II
- ARICH is running stably since 2019 (start of Belle II physics run).
- Damage of HAPDs by neutrons are anticipated, but the fluence of the neutrons are well below the tolerable level.
 - ✓ SEUs in FPGAs are also managed by the auto-correction mechanism.
- Initial performance of the ARICH is estimated.
 Good separation is obtained.
- Other photon-detector candidates are under study for future upgrade.



Backup

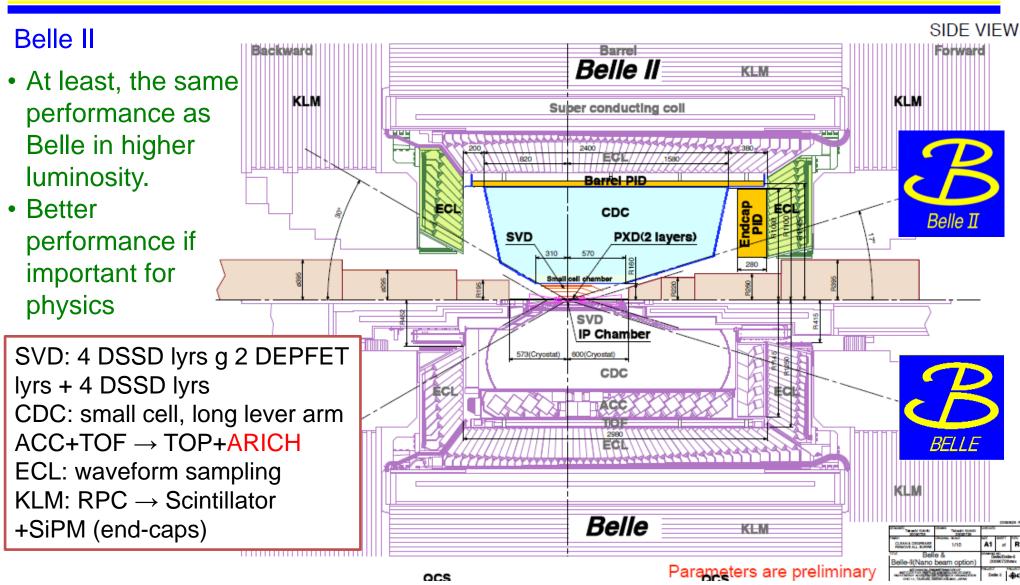
Belle II Experiment

KEKB

- 3.5 GeV e+ + 8 GeV e-.
- Max. current 2.0A (e⁺), 1.4A (e⁻).
- Peak lum. 2.11 × 10³⁴ cm⁻² s⁻¹
- Total luminosity ~1040 fb⁻¹

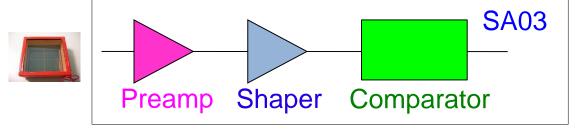
Belle and Belle II experiment:

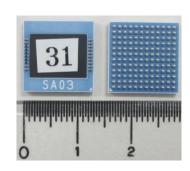
- KEK (High Energy Accelerator Research Organization) in Tsukuba, Japan.
- Accelerator: KEKB / SuperKEKB
 - ✓ Linac + 3km ring
 - ✓ Asymmetric e⁺-e⁻ collider
- KEKB + Belle : 1999-2010.
- SuperKEKB + Belle II : 2019-
- "B factory experiments" (produce large amount of B mesons).


SuperKEKB

- 4 GeV e+ + 7 GeV e-.
- Nano beam scheme.
- Target luminosity
 - ✓ Total 50 ab⁻¹

From Belle to Belle II


Electronics


- Total 60000 channels.
 - ✓ 1-bit ON/OFF information is enough.
- High-gain, low-noise.
- Only 5 cm available behind HAPD

ASIC (SA03)

FPGA for readout

space for electronics

HAPD

Aerogel

200 30 50 [mm]

- CMOS 0.35 µm process @ TSMC and X-FAB.
- 36 ch / chip (i.e. 4 ASIC for one HAPD).
- Variable gain (3.1-12.5 V/pC) and shaping time (100-200ns).
- Common threshold but adjustable offset (16-bit; for each channel).
- DICE (Dual Interlocked CEII) register to be tolerant to SEU.
- Mass production done at X-FAB.

SuperKEKB, Belle II Operation

2016 Feb.-Jun. : Phase 1

- SuperKEKB commissioning without Belle II detector
 - Belle II installed in 2017. Apr.
 - ARICH installed in 2017 summer.

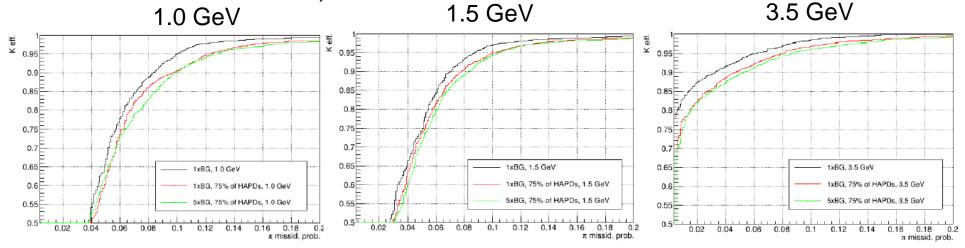
2018 Feb.-Jul. : Phase 2

- Belle II detector without inner vertex detectors
- First collision. Commissioning of SuperKEKB and Belle II, beam background study.
 - ARICH hardware modification + re-installation

2019 Mar. -: Phase 3

- Physics run with full Belle II detector.
- 6.5 fb⁻¹ accumulated in 2019 Mar.-Jul operation.
- Autumn run starts on Oct. 15.

2017/4/11

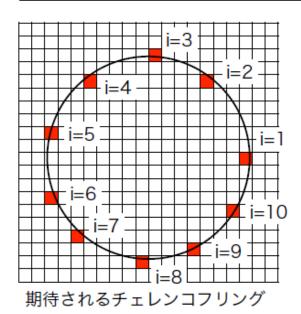

Simulation with more broken HAPDs

———— All HAPD alive + beam background with full luminosity

25 % of HAPD randomly dead + beam background with full luminosity

 effect of broken HAPDs (full HAPD dead). Disabled 25% of HAPDs, randomly distributed over the detector plane

- ~5% drop in efficiency, again this is largely independent of background photon hit level
- → background photons are not serious problem for performance (at least up to 10xBG)
- → operation with 75% of HAPDs seems still reasonable


Likelihood Calculation

各トラックに対して、候補粒子(π 、K、 μ 、e、p、d)のlikelihoodを計算

Likelihoodの計算方法

- 1. トラックから25 cmの領域内のヒットに対して、チェレンコフ角度(θ_{Ch})を計算
- 2. 候補粒子毎の期待される検出光子数を算出(A)
- 3. $0.1[rad] < \theta_{Ch} < 0.5[rad]$ のヒットに対して、ヒットのlikelihood(ℓ_i^h)を計算(B)
- 4. AとBから候補粒子毎のlikelihood(ℒh)を算出

$$\ln \mathcal{L}^h = -N^h + \Sigma [\ell_i^h + \ln(1 - e^{-\ell_i^h})]$$

h: 候補粒子 i: ヒット番号

N^h: 候補粒子hの期待される検出光子数

 ℓ_i^h : i番目のヒットのlikelihood

粒子識別はlikelihoodの比を用いて行う

$$\mathsf{K}/\pi$$
識別の例: $\frac{\mathscr{L}^{\mathsf{K}}}{\mathscr{L}^{\mathsf{K}}+\mathscr{L}^{\pi}}$

MPPC (SiPM)

MPPC sample s	Pixel pitc h (um)	gain	Pixel numb er/ 1ch	Effective photosen sitive area(mm ²	Spectr al respo nse	PDE(%)	Fill factor (%)	Vbr	Vop	dark count (kcps)	dark current (nA)	Termin al capacit ance (pF)
- S133 61-30 50AE- 08	50	1.7 * 10 ⁶	3584	3*3	320-90 0 (450)	40	74	53 ± 5	Vbr +	500 (1500)	100- 300	320
- S133 61-30 75AE- 08	75	4.0 * 10 ⁶	~1600	3*3	320-90 0 (450)	40	82	53 ± 5	Vbr + 3	500 (1500)	400- 500	320
- S141 60-30 10PS	10	1.8 * 10 ⁵	90000	3*3	290-90 0 (460)	18		38	Vbr + 5	700	20-30	530
- S141 60-30 15PS	15	3.6 * 10 ⁵	40000	3*3	290-90 0 (460)	32		38	Vbr + 4	700	50-60	530
- S141 60-30 50HS	50	2.5 * 10 ⁶	3531	3*3	270-90 0 (450)	50	74	38	Vbr + 2.7		600- 1800	500