International workshop on the High Energy CEPC 24-28 October 2022

Jerome Baudot on behalf of Belle II VTX collab.

- → The SuperKEKB / Belle II project
- → Rationale & requirements for an upgrade
- → VTX proposal concepts
- → Full simulation results
- → OBELIX sensor & prototype ladders

B,c,τ-factory: SuperKEKB + Belle II

- Initial physics program based on $L_{int} = 50 \text{ ab}^{-1} \text{ at } \sqrt{s} = M_{Y(4S)}$ \Rightarrow The Belle II physics book <u>PTEP 12 (2019) 123C01</u>
- High luminosity collider:
 - L_{peak} ~ multi 10³⁵ cm⁻².s⁻¹ range
 - High current / nano-beams / specific crossing features
 - Challenging background conditions

 \Rightarrow Snowmass contribution: <u>arXiv 2203.05731</u>

Belle II detector Upgraded or new / Belle

J.Baudot - Belle vertex detector upgrade with DMAPS - CEPC workshop, 2022/10/24

The current VXD

<u>Two technology system</u>

• SVD = Double-Sided Strip Detector

- Read-out sensor connected on sensor = Origami
- Hit time-stamping σ_t ~ 2-3 ns
- Spatial resolution $\sigma_{s.p.} \sim$ 20 μm

- PXD = DEPFET sensors
 - Very low material budget 0.2 % X $_{\rm 0}$ / layer
 - Small first layer radius = 1.4 cm
 - Long integration time 20 μs / trigger rate & injection bkg

VXD role

- Standalone tracking (SVD) for low momentum
- Vertexing from
 - PXD precision measurements
 - VSD interconnection from tracks to PXD hits

- The plan is successful so far with occupancy < 1 %
- At nominal luminosity, tracking at ~3% occupancy

Planning an upgrade for the Belle II-VXD

Planning an upgrade for the Belle II-VXD

J.Baudot - Belle vertex detector upgrade with DMAPS - CEPC workshop, 2022/10/24

Requirements for short-term VXD upgrade

Vertexing & Tracking performances at least as good as current VXD

- Radius range 14 135 mm
- angle from 17 to 160 degrees
- Single point resolution $\leq 10-15 \ \mu m$
- Robust against environment for inner layer (r=1.4 cm)
 - Hit-rate ~ 120 MHz.cm⁻²
 - Total Ionizing Dose ~ 10 kGy / year
 - NIEL fluence ~ $5x10^{12} n_{eq}.cm^{-2}$ / year

 ✤ Based on current extrapolation with safety factor (x5) bear In mind large uncertainties (previous slide)

Possibly improve performances

- Impact parameter resolution
- Tracking efficiency ($p_T < 100 \text{ MeV}$) & Fake rate
- Faster High Level Trigger decision
 - Simplified track pattern recognition

VTX general concept

• 5 layers

- About 2000 depleted-MAPS = OBELIX
- Fast enough for including all layers in tracking
- Services mostly on one side (backward region)
- Total event size ~30 kBytes
- Geometries adaptable to potential change of interaction region
- 2 inner ladders with radius < 3 cm
 iVTX, ~0.1 % X₀
 - 12 cm long
- 3 outer ladders with radius > 3 cm
 - oVTX, 0.5-0.8 % X_0 (increasing with radius)
 - 20-70 cm long

VTX collaboration

HEPHY, Vienna CPPM, Marseille IJCLab, Orsay IPHC, Strasbourg University of Bonn University of Dortmund University of Goettingen KIT, Karlsruhe University of Bergamo INFN, Pavia INFN & University of Pisa IFAE, Barcelona IMB-CNM-CSIC, Barcelona IFCA (CSIC-UC), Santander IMSE-CNM-CSIC, Seville IFIC (CSIC-UV), Valencia ITAINNOVA, Zaragoza

VTX simulated tracking performances

Context = full Belle II simulation framework, including background

- Realistic pixel sensor model
 - Digitizer assuming
 - –fully depleted thin layer 30 μm
 - Pixel 33x33 μm^2 with 7bits Time over Threshold
 - Tuned with Monopix-1 beam data

Geometry

- Taken from fast simulation
- 5 or 7 barrel layers with/without 2 forward disks
- Crude layer description but with targeted material budget \rightarrow per layer: 0.1 % X_0 for radii <4 cm then 0.3 % X_0
- Full tracking chain
 - VTX standalone
 - CDC standalone
- then combined

VTX simulated tracking performances

Context = full Belle II simulation framework, including background

Realistic pixel sensor model

- Digitizer assuming
 - fully depleted thin layer 30 μm
 - Pixel 33x33 μm^2 with 7bits Time over Threshold
- Tuned with Monopix-1 beam data

Geometry

- Taken from fast simulation
- 5 or 7 barrel layers with/without 2 forward disks
- Crude layer description but with targeted material budget \rightarrow per layer: 0.1 % X_0 for radii <4 cm then 0.3 % X_0
- Full tracking chain
 - VTX standalone
 - CDC standalone

then combined

=> Occupancy < 0.002 % in first layer with current background estimate x 5

=> <u>https://doi.org/10.5506/APhysPolB.52.909</u>

TJ-Monopix2 lab-test results

- Depleted MAPS technology choice
 - Tower 180 nm modified process (full Depletion) with small diode as sensing node
 - TJ-Monopix2 as forerunner of OBELIX
 - 33 μm pitch, 25 ns integration, 17x17 mm² matrix
 - 4 front-end flavours (gain, speed, depletion)
 - In-pixel detection threshold + Time-Over-Threshold (ToT)
 - Various sensing volume thickness CZ-bulk, epi-30 µm

Calibration

- S-curves → threshold (mean, dispersion)
 Internal injection
- ToT calibration
 - Internal injection + X-ray irradiations
- Better and better understanding
 => Tuning of detection threshold / noise
 => Tuning of ToT dynamics & precision

Inputs for OBELIX design & next beam-test

- 1400

1000

800

600

400

S-Curve VH = 140, VL = 139..1 (step -1)

80 100

Injected charge [DAC]

1.4

1.2

1.0

E 0.8

0 0 0.6

0.4

0.2

20

Threshold $\sim 500 \text{ e}$ -

Dispersion ~18 e-

40 60

Bdaq53 acquisition system (also baseline for OBELIX)

TJ-Monopix2 test beam results

- DESY 5 GeV electron beam
 - Telescope (MIMOSA-26) extrapolation σ~3.5 μm
- Results with high threshold 500 e-
 - Detection efficiency 99.020 \pm 0.040 %
 - Position resolution ~9 µm (< digital resolution)
- Simulation
 - Tuning of model in BASF2

0.99

0.98

etticency 0.96 -

0.94

0.93

- Lower detection threshold
- Irradiation 10^{14} - $10^{15} n_{eq}/cm^2$
- Next beam test in Q1-2023

OBELIX (Optimized BELle II pIXel) sensor

OBELIX-1 design

<u>Status</u>

- Main layouts (matrix, logic, regulators) almost ready
- Power optimisation on-going for
 - In-pixel Front-End
 - Trigger logic
- Control logic under development
- Large verification effort ahead
- Submission early in 2023

RCU_A/D: Regulator Control Unit Analog/Digital REG_DAC: DAC Regulator STATIC_BUFFER: BCID Buffers

iVTX inner layer concept

oVTX outer layer concept

Long ladders

- Inherited from ALICE-ITS2
 - Carbon-fiber truss support frame
 - Cold-plate with water coolant
 - Long-flex for power & data

- L3-4, radius 4-9 cm, length < 50 cm
 - Single sensor row, ~0.5 % $X_{\rm 0}$
- L5, radius 14 cm, length 70 cm
 - Double sensor rows , ~0.8 $\%~X_0$

aire RIEN JURG

• VTX could be the first vertex detector with MAPS for e+e- collisions < 2030

• Large prototyping & characterising effort

- Sensor, ladder
- Critical milestones reached for Conceptual Design Report early 2023

Outlook on schedule

- -VTX development phase completed around end of 2023 => Technical Design Report
- Production phase may start in 2024

SuperKEKB collider

J.Baudot - Belle vertex detector upgrade with DMAPS - CEPC workshop, 2022/10/24

Belle II, another view

Impact on performance & physics

IPHC Institut Pluridisciplinaire Hubert CURIEN KRASBOURG

=> Snowmass Belle II : <u>arXiv 2203.11349</u>

	XD	DC	Ð	CL	ΓM	-0
Topic	>	U	Р	Ы	K	_
Low momentum track finding	\checkmark	\checkmark				
Track p, M resolution		\checkmark				
IP/Vertex resolution	\checkmark					
Hadron ID		\checkmark	\checkmark			
$K_{\rm L}^0$ ID				\checkmark	\checkmark	
Lepton ID		\checkmark		\checkmark	\checkmark	
π^0,γ				\checkmark		
Trigger	\checkmark	\checkmark				

Topic	VXD	CDC (incl. Trigger)	PID	$PID(\Omega ext{ coverage})$	ECL	KLM
$\mathcal{B}(B \to \tau \nu, B \to K^{(*)} \nu \bar{\nu})$	\checkmark			\checkmark	\checkmark	\checkmark
$\mathcal{B}(B \to X_u \ell \nu)$	\checkmark		\checkmark	\checkmark		\checkmark
$R, $ Polarisation $(B \to D^{(*)} \tau \nu)$	\checkmark				\checkmark	
FEI	\checkmark	\checkmark		\checkmark		
$S_{ m CP}, C_{ m CP}(B ightarrow \pi^0 \pi^0, K^0_S \pi^0)$	\checkmark	\checkmark			\checkmark	
$S_{ m CP}, C_{ m CP}(B o ho \gamma)$		\checkmark	\checkmark		\checkmark	
$S_{ m CP}, C_{ m CP}(B ightarrow J/\psi K_{ m S}^0, \eta' K_{ m S}^0)$	\checkmark	\checkmark				
Flavour tagger	\checkmark		\checkmark			
$ au ~ { m LFV}$		\checkmark			\checkmark	
Dark sector searches		\checkmark			\checkmark	\checkmark

Details of the 5 layer VTX geometry

VTX 5 layers

Layer no.	1	2	3	4	5
Radius (mm)	14.1	22.1	39.1	89.5	140.0
# Ladders	6	10	8	18	26
# Sensors per ladder	4	4	8	16	24

VTX simulated tracking performances

=> <u>https://doi.org/10.5506/APhysPolB.52.909</u>

TJ-Monopix in Tower 180 nm process

2x2 pixels

Pixel matrix read-out architecture

- Collaboration: Bonn, CERN, CPPM, CEA-IRFU
- Modified process for radiation tolerance DOI: 10.1016/j.nima.2020.164403
- Column-drain read-out Inherited from ATLAS FE-I3
- Capable to handle >100 MHz/cm²
 - Fired pixel address moves fast down to periphery

VTX sensor requirements

	Belle-II VTX
Spatial res.	< 10-15 µm
Mat. Budget inner-outer layers	0.1-0.8 %X ₀ /layer
Hit rate	<120 MHz/cm ²
Time precision	<100 ns
Trigger (freq) (delay)	30 kHz 5-10 ns
Rad.hard. (TID) 10years (fluence)	<100 kGy <10 ¹⁴ n _{eq} /cm ²

_	Belle-II CMOS-MAPS	TJ-Monopix2
Sensitive area	~30x17 mm ²	17x17 mm ²
Sensitive thickness	~30 µm	25-100 µm
Pitch	30 to 40 µm	33 µm
Signal digits	1 to few bits	7 bits ToT
Integration time	25 to 100 ns	25 ns
Hit memory for trigger	< 100 kb	
Power	<200 mW/cm ²	200 mW/cm ²
TID fluence	<100 kGy < 10 ¹⁴ n _{eq} /cm ²	100 kGy 10 ¹⁵ n _{eq} /cm ²

Chosen as forerunner for OBELIX sensor