
Probing BSM effects in e+e− → WW with
machine learning

Shengdu Chai

Fudan University, Physics Department

Oct.26 2022

Current work with Lingfeng Li and Jiayin Gu



▶ How to probe beyond the standard model physics?

▶ Why do we study the process of diboson?

▶ Why it is necessary to use Machine Learning Method?



Big Picture

▶ Build large colliders → high energy → discover new particles!

→
do precision measurements → discover new physics indirectly!

▶ Build a larger collider?

▶ No guaranteed discovery!

▶ Higgs Factory! (CEPC,ILC,etc)

▶ Standard Model Effective Field Theory(SMEFT)
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The Standard Model Effective Field Theory

▶ [LSM ] ≤ 4. Why?
▶ Renormalizable
▶ Higher dimensional operators are fine as long as we are happy

with finite precision in perturbative calculation.

▶ Assuming Baryon and Lepton numbers are conserved,
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▶ If Λ ≫ E , v ,then SM + dimension-6 operators are sufficient to
parameterize the physics around the electroweak scale.



Why Diboson

▶ Diboson is an important part of the precision measurement
program

▶ Connected to the higgs couplings in the SMEFT frame

▶ Can be measured very well at Higgs factories



EFT Parameterization

▶ Focusing on tree-level CP-even dimension-6 contributions

▶ e−e+ → WW can be parameterized by

δg1,Z , δκγ , λZ , δg ee
Z ,L, δg ee

Z ,R , δg eν
W , δmW

▶ mW is better constrained, so we can simply set δmW = 0



e−e+ → WW with Histogram

▶ The TGCs are sensitive to the differential distributions
▶ One could do a fit to the binned distributions of all angles.
▶ Not the most efficient way of extracting information.
▶ Correlations among angles are sometimes ignored.



e−e+ → WW with Optimal Observable

▶ What are Optimal Observables?
Diehl, M., Nachtmann, O., 1994. Zeitschrift Für Physik C Part Fields 62, 397–411.

▶ In the limit of large statistics (everything is Gaussian) and
small parameters (linear contribution dominates), the best
possible reaches can be derived analytically!

dσ

dΩ
= S0 +ΣiS1,igi , c−1

ij =

∫
dΩ

S1,iS1,j
S0

· L

▶ The optimal observable is a function of 5 angles and is given

by Oi =
S1,i
S0

https://link.springer.com/article/10.1007/BF01555899


Systematic Effects

▶ Initial state radiation

▶ Jet smearing
▶ Detect effects

▶ final state jets can not be distinguished
▶ neutrino cannot be directly measured

▶ They are systematic effects



Systematic Effects

▶ In simulation, systematic effects can’t be ignored

▶ Analytical methods become more difficult and time consuming
when we include more realistic effects.

▶ Naively applying optimal observables could lead to a bias
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Likelihood Inference

▶ Neyman-Pearson lemma says
the best statistics to test
new physics is the likelihood
ratio given data x and
theory parameters θ1 and θ0

r(x |θ0, θ1) =
p(x |θ0)
p(x |θ1)

▶ The key thing is r(x |θ0, θ1)
▶ Analytical methods always

computational consuming
and ignore systematic effects



Likelihood Inference

▶ Johann Brehmer, etc develop new simulation-based inference
techniques that are tailored to the structure of particle physics
processes.[arXiv:1805.00013]Brehmer, J, Cranmer, K, Louppe, G, Pavez, J

▶ Machine Learning method can extract more information from
x to predict the likelihood ratio

https://arxiv.org/pdf/1805.00013.pdf


Particle-Physics Structure

▶ The likelihood function can be written as

p(x |θ) =
∫

dz p(x , z |θ) =
∫

dz p(x |z)p(z |θ)

▶ Here p(z |θ) = 1/σ(θ)dσ/dz is the parton level density
distribution.

▶ p(x |z) describes the probabilistic evolution from the
parton-level four-momenta to observable particle properties

p(x |z) =
∫

dzd

∫
dzs

∫
dz p(x |zd)p(zd |zs)p(zs |z)



Particle Structure

▶ We can extract more information from the simulator by
defining joint likelihood ratio and joint score

r(x , z |θ0, θ1) =
p(x |z)p(z |θ0)
p(x |z)p(z |θ1)

=
p(z |θ0)
p(z |θ1)

α(x , z |θ0, θ1) = ∇θ0r(x , z |θ0, θ1)|θ0=θ1

▶ The loss function is

L[ĝ(x)] =
∫

dxdz p(x , z |θ)|g(x , z)− ĝ(x)|2

▶ The loss function is minimized when g(x , z) = ĝ(x)



ML Algorithm: ALICE

▶ Approximate likelihood with improved crossentropy estimator

▶ Directly predict the likelihood ratio

▶ Loss function L is

L(ŝ) ∝
∑
x

[s(x , z |θ0, θ1) log(ŝ(x)) + (1− s(x , z |θ0, θ1)) log(1− ŝ(x))]

▶ Here s(x , z |θ0, θ1) = 1
1+r(x ,z|θ0,θ1)

▶ r̂(x |θ0, θ1) can be reconstructed by ŝ(x) = 1
1+r̂(x |θ0,θ1)



ML Algorithm: SALLY

▶ Score approximates likelihood locally

▶ likelihood ratio can also be parameterized by Wilson
coefficients

r̂(x , θ) = 1 +
∑
i

α̂i (x)θi

▶ And we can predict αi term as well

▶ Loss function L is

L ∝
∑
i

|α̂i (x)− αi (x , z |θ0, θ1)|2



Prediction of Likelihood Ratio:ALICE

▶ ALICE method offers a precise way to predict the likelihood
ratio directly.



Prediction of Likelihood Ratio:SALLY

▶ We can construct the r̂(x , θ) by
predicting the alpha term and give
an analytical expression of r̂(x , θ)



Estimation of the Boundary:Compared with Histogram

▶ no bias

▶ precise bounds along individual directions

▶ weak constraints in other directions



Estimation of the Boundary:Compared with OO

▶ Once you get the r̂(x |θ), χ2 = −2
∑

i log(r̂(xi |θ))
▶ The χ2 analysis shows that ML method can correct the large

bias and give a strong constrain on the model parameters.



Conclusion

▶ Future colliders will generate large amount of data, ML will
benefit it a lot

▶ By machine learning, we can construct 6D likelihood ratio to
improve the global fit result

▶ Machine Learning can easily take care of systematic effects as
long as the MC simulation is accurate.

▶ Machine learning is (likely to be) the future



Thanks!



Backup Slides:e−e+ → WW parameterization

LTGC = igsθwA
µ(W−νW+

µν −W+ν
µν )

+ ig(1 + δgZ
1 )cθwZ

µ(W−νW+
µν −W+ν

µν )

+ ig [(1 + δκZ )cθwZ
µν + (1 + δκγ)sθwA

µν ]W−
µ W+

ν

+
ig

m2
W

(λZcθwZ
µν + λγsθwA

µνW−ρ
ν W+

ρµ)

▶ Imposing Gauge invariance one obtains δκZ = δg1,Z − t2θw δκγ
and λZ = λγ

▶ δg1,Z , δκγ , λZ , δg ee
Z ,L, δg ee

Z ,R , δg eν
W , δmW


