

ÉCOLE POLYTECHNIQUE

Highly-Granular ECAL at Higgs Factories for Particle Flow Approach based detectors

Full Reconstruction of single particles

- Charged measured mostly from trackers
- Neutrals only measured from calorimeters
- → Large Tracker
 - Precision and low X₀ budget
 - Pattern recognition
- → High precision on Si trackers
 - Tagging of beauty and charm
- Large acceptance

Highly Granular Imaging Calorimetry

Vincent.Boudry@in2p3.fr

An Ultra-Granular SiW-ECAL for experiments

Particle Flow optimised calorimetry

- Standard requirements
 - Hermeticity, Resolution, Uniformity & Stability (*E*, (θ,φ), t)
- PFlow requirements:
 - Extremely high granularity
 - Compacity (density)

Vincent.Boudry@in2p3.fr

SiW+CFRC baseline choice for future Lepton Colliders:

- Tungsten as absorber material
 - $X_0 = 3.5 \text{ mm}, R_M = 9 \text{ mm}, \lambda_1 = 96 \text{ mm}$
 - Narrow showers
 - Assures compact design
- Silicon as active material
 - Support compact design: Sensor+RO<2mm
 - Allows for ~any pixelisation
 - Robust technology
 - Excellent signal/noise ratio: ≥10 Intrinsic stability (vs environment, aging) Albeit expensive...
 - Tungsten–Carbon alveolar structure Minimal structural dead-spaces
 - Scalability

To be assessed

by prototypes

Not included: general services

Modular & Transverse Constraints

Timeline of SiW-ECAL Prototypes

(40+24)

Detector slab (x30)

Physical (2005-11)

- 1×1 cm² on 500µm 6×6 cm²
 Pad glued on PCB
 Floating GR
- × 30 layers (10k chan).
- External readout
- Proof of principe

Technological (now)

- Embedded electronics
 - Power-Pulsed, Auto-Trig, delayed RO
 - S/N = (MPV/ σ_{Noise}) $\geq \sim 12$ (trig)
- Compatible w/ 8+ modules-slab
- 5×5 mm² on 320–650µm 9×9 cm²
 × 26–30 layers
 - 8k (slab) ~ 30k (calo) channels

We are

- here
 - Final ASIC

x 2

Pilote

- 1M

Full Detector

× 45

- ➡ 70M channels
- on 750µm 12×12 cm² 8" Wafers ?

'dead space free' Carbon Fibre-W

Structure

- Pre-industrial building
- Full integration (⊃ cooling)

CALICE SiW-ECAL Technological Prototype Beam tests (... at last!)

Nov. 2021 + March 2022 : electrons of 1–6 GeV (4th attemp...)

- 15 layers of 1024 cells + Compact "ILD-like" DAQ
 - 5 types de VFE boards (FEV10, 11, 12, 13, COB) \otimes 3 Wafer thicknesses (320, 500, 650 μ m)
 - 2 Tungsten absorbers configurations.

~3 weeks of commissioning and training

- Mechanical structure (adding or removing the tungsten plates)
- Hold values, Gain optimization, Threshold optimization, single cell calibration, etc
 - ~500k fits (15 boards × 16 ASICs × 64 ch × 15 SCAs × 2 gains)
- Test of combined DAQ : ECAL + AHCAL
- Full simulations (\supset cell masking)

1st full shower profiles & resolutions

Filtering needed (retriggers, events splitting, ...)

CALICE & ILD for CEPC - CEPC vvs, 20/10/2022

J. Kunath, PhD

4000

2000

7500

5000

2500

20 40

20

=FV12

60 80

shower energy [a. u.]

6/35

Vincent.Boudry@in2p3.fr

Beam test: CERN

2 weeks in June @ SPS-H2

- SiW-ECAL + AHCAL
 - 15 layers, 1 configuration W
- Running : 75% of time :
 - e : 10, 20, 40, 60, 80, 100, 150 GeV
 - µ : 50, 150 GeV
 - π : 10, 20, 70, 100, 150, 200 GeV

Two issues:

- Increased delaminations of wafers on the edges

under investigation; main suspects:

Too much handling; Small batch production; Glue aging

- Collective wafer trigger at high energy (≥20 GeV)
 - linked to HV distribution

Electron

Fig. Simulation e- 10 GeV

Fig. Reconstructed e- 10 GeV

Fig. Simulation e- 100 GeV CALICE & ILD for CEPC – CEPU VVS, 25/ I U/2022

Fig. Reconstructed e- 100 GeV

New DAQ system (2020)

Since 2018, IJClab develop new DAQ

- New interface board: SL Board
- New concentrator board: Core mother
- Add backplane board for stack
- Software based on LabWindows

Acquisition software

Written in C under Labwindows CVI

- Handle whole detector
- Two sides with 15 SLABs
- 5 ASU per SLAB
- Make advanced measurements
- Hardware automatically detected
 - Number of SLAB
 - FEV type + number of ASU
- Slowcontrol:
 - All parameters programmable
 - Integrated analysis

Vincent.Boudry@in2p3.fr

Save Pedestal Values to Calib Structure

Save Pedestals from Callo Structure to Callo Fil

Power distribution dedicated for LONG SLAB

Expected results

In the electrical long SLAB, 8 boards are chained and due to resistivity of layer per board on analog 3.3V, we measure voltage drop along the long SLAB coupled with bandgap distribution.

 \rightarrow We decide to generate local power supply with LDO (Low Drop Out) to cancel voltage drop and reduce common noise.

New front end board FEV2.0 (2021)

Observation from previous test beam @ DESY 2018 with electrical long SLAB:

- Voltage drop
- Clock configuration integrity
- Power pulsing

New feature of FEV 2.0:

- 1 LDO (low drop out) per SK2A on analog power supply
- 1 LDO per 4 SK2A on digital power supply
- Add buffer on configuration clock (every 8 SK2A)
- Driving HV (up to 350V) + add filter for each wafer
- Improve shielding for analog signal and power supply

6 months delayed due to cabling problem components supply

SiW-ECAL for circular EW/Higgs Factories

Vincent.Boudry@in2p3.fr

Running conditions

Linear e+e- (ILC, HL-ILC, ...)

- 250 GeV (ZH), 365 GeV (tt), 500 GeV (ZHH) + [1000 GeV], *L*~cst.
- Power pulsing : 5 [10–15]Hz × 1 [2] ms

Circular e+e- (CEPC, FCC-ee) :

- 90GeV × 10⁷ fb × 5·10³⁶ cm⁻² s⁻¹ (qq × 20,000 ILC @ 250GeV)
- 150 GeV (WW) + 250 GeV (ZH)+ 365 GeV (tt) ~10⁴ fb × 5·10³⁵ cm⁻² s⁻¹ (qq × 5–10 ILC @ 250)

Paradigme Change: Continuum hypothesis

- ASIC, Power/Cooling, DAQ, Granularity, Precisions (E, t), New ideas...

	Z	14/+14/-	711	
	1000	** **	ZH	ttbar
GeV	91.2	160	240	350-365
10 ³⁴ cm ⁻² s ⁻¹	230	28	8.5	1.7
ns	19.6	163	994	3000
pb	35,000	10	0.2	0.5
pb	40,000	30	10	8
Hz	92,000	8.4	1	0.1
10 ⁻⁶	1,800	1	1	1
	GeV 10 ³⁴ cm ⁻² s ⁻¹ ns pb pb Hz 10 ⁻⁶	GeV 91.2 10 ³⁴ cm ⁻² s ⁻¹ 230 ns 19.6 pb 35,000 pb 40,000 Hz 92,000 10 ⁻⁶ 1,800	GeV 91.2 160 10 ³⁴ cm ⁻² s ⁻¹ 230 28 ns 19.6 163 pb 35,000 10 pb 40,000 30 Hz 92,000 88.4 10 ⁻⁶ 1,800 1	GeV 91.2 160 240 10 ³⁴ cm ⁻² s ⁻¹ 230 28 8.5 ns 19.6 163 994 pb 35,000 100 0.2 pb 40,000 300 10 Hz 92,000 8.4 1 10 ⁻⁶ 1,800 1 1

https://indico.cern.ch/event/1064327/contributions/4893208/ Mogens Dam @ FCC Week, 10/06/2022

	Higgs	W	Z	ttbar
Bunch number	249	1297	11951	35
Bunch spacing [ns]	636	257	23 (10% gap)	4524
Bunch population [10 ¹⁰]	14	13.5	14	20
Bunch number	415	2162	19918	58
Bunch spacing [ns]	385	154	15 (10% gap)	2640
Bunch population [1010]	14	13.5	14	20

Vis [GeV] Snowmass2021 White Paper AF3-CEPC, arXiv:2203.09451 CALICE & ILD for CEPC – CEPC WS, 25/10/2022

Detector Parameters: scaling rules

- Cell lateral size

- Shower separation (EM~2×cell size)
- Cell time resolution (1 cm/c ~ 30 ps)
 - Time performance for showers
 - » ParticleID, easier reconstruction
- Longitudinal segmentation
 - sampling fraction
 - E resolution (ECAL ~15%/ \sqrt{E})
 - shower separation/start
- ECAL inner radius; Barrel Z_{Start}
- ECAL-HCAL distance
- Barrel-Endcap distance
- Dead-zones sizes (from Mechanics, Cooling)

Number of cells \nearrow \Rightarrow Cost \checkmark (1/size²) **Cell density** \checkmark \Rightarrow Power consumption

7

Time resolution $\searrow \Rightarrow$ Power \checkmark

threshold, passive vs active cooling dead-zones ≯

> NEED TO BE FULLY RE-EVALUATED for EW region

Inner Radius $\nearrow \Rightarrow$ Tracking performance \cancel{A} Cost \cancel{A}^2 (\supset Magnet, Iron) **Gaps** $\cancel{A} \Rightarrow$ PFlow performances \cancel{A} $\bigcirc \rightarrow$ Active cooling

Review of physical implication (from TeV): see Linear collider detector requirements and CLD, F. Simon @ FCC-Now (nov 2020) Physics Requirement studies @ 250 GeV: see Higgs measurements and others, M. Ruan @ CEPC WS, (nov 2018)

Vincent.Boudry@in2p3.fr

Services: integration & cooling

- Pipe insertion process introduces some efficiency loss due to the thermal contact resistance.
- The benefit remains significant with regard to a passive cooling

CALICE & ILD for CEPC – CEPC WS, 25/10/2022

п

7

Pipe insertion on a cooling prototype Vincent, Boudry@in2p3,fr

Timing in calorimeters: 0.1-1 ns range

Cleaning of Events

[CLIC CDR: 1202.5940] adapted from L. Emberger Vincent.Boudry@in2p3.fr

Particle ID by Time-of-Flight

- Complementary to dE/dx
 - here with 100ps on 10 ECAL hits

Ease Particle Flow:

- Identify primers in showers
- Help against confusion better separation of showers
- Cleaning of late neutrons & back scattering.
- Requires 4D clustering

< 5 ns ... < 15 ns ... < 50 ns > 50 ns

See Cluster timing and leakage in time at the CEPC baseline Calorimeter (Yuzhi Che)

Timing Studies

2015 CMS HGCAL CERN timing test beam

Time resolution vs S/N ratio

CALICE / ILD

 Bulk Timing © M. Ruan

See Cluster timing and leakage in time at the CEPC baseline Calorimeter (Yuzhi Che) CALICE & ILD for CEPC – CEPC WS, 25/10/2022

SiW-ECAL optimisation

Vincent.Boudry@in2p3.fr

Rationale/Questions

PFA combines : particles to get the best possible Jet Energy Resolution (JER):

- Charged Particle ~65% of E
- Long Lived Neutral Hadrons ~ 10%, measured by ECAL+HCAL
- Photons: 27 % E, solely measured by ECAL ← how well are those measured ?
- Separation of close photons, photon/charges (τ and π^{0} 's tagging)
- How can we improve the resolution...?
 - Lower E-gamma threshold
 - "Best" E-resolution ← that depends on the average energy of the photons
- ... while keeping the cost and reasonnable and technical feasibility
 - Contants: number of layers, amount of tunsgten

Vincent.Boudry@in2p3.fr

Parameters space

Main parameters of the ILD SiW-ECAL

- $-24 X_0$ of W
- 15 layers (CALICE proto) / 30 layers (ILD)
- 2 sections of 1 and 2 thickness of W
- Cell size of $(5.5 \text{ mm})^2 \times 500 \text{ }\mu\text{m}$

Boundaries: What needs to be fixed ?

- Cost ?

Min. Performances

Each needs introspection

- Optional W thickness ?
 - Photon (and Electron) containment
 - Highly dependant on E tails and angles
- Optimal number of layers ?
 - More is better...
 - Upper limits from cost and heat
 - Lower limit from performances
- Absorber repartition: ~ started
 - Unhomogenous might bring longitudinal dependance of E
- Cell size: studied (PFA, CALICE prototypes)
 - To be reassesed for circular colliders

Previous studies

SiD SiW ECAL Fast Sim Studies

- Thin W : 20× 0.64 X₀

J. Brau, LCWS 2018

- Thick W: 10× 1.3 X₀
- 13 mm² Hex pads

Resolution for 100 GeV electron (simple 25.6 X₀ stack)

Vincent.Boudry@in2p3.fr

Previous studies: PFA

PandoraPFA Studies

- Radius with SDHCAL
 - vs Radius, B

ARBOR:

NIM A611 25-40 (2009)

ILD: Robustness of a SiECAL used in Particle Flow Reconstruction

- Jet Energy Resolution vs
 - dead channels, noise, mis-calibration and crosstalk

using PandoraPFA JER

ArXiv:1404.01 24

> 20 25 30

Vincent.Boudry@in2p3.fr

CALICE & ILD for CEPC - CEPC WS, 25/10/2022

Specific studies

Dead materials

- ILD: . Jeans

EM shower in Highly-Granular ECAL

As illustration: Full Simulation of SiW-ECAL prototype (DD4Sim)

- 15 layers × (5.5 mm)²
 - Silicon Sensors 500 µm + 650µm
 - W of 7× 4.2 mm (1.2X₀) and 8× 5.6 mm (1.6X₀)
 - − ≠ ILD but easy modifications
- Calibration on muons

700

6000

2000

1000

Vincent.Boudry@in2p3.fr

of Entrie

Threshold

Energy measurements

Vincent.Boudry@in2p3.fr

Energy reconstruction

Energies

- $E_{\Sigma} = \sum E_i$
- $Ef = \sum \omega_i E_i$; $\omega_i = 1/(1+f_i)$; f = mip sampling fraction

At least as regular as energy...

- $-Eh = \sum (E_i > 0.5 \text{ mips})$
- $Efh = \sum \omega_i \times (E_i > 0.5 \text{ mips})$

... but saturates at high energy.

Nhits *E*_h

Vincent.Boudry@in2p3.fr

Energies Resolutions

Preliminary resolutions

- Linearity corrected
- Errors bars within the lines
- No digitization, No clustering, No noise
 - But cut at 0.5 mips
 - Small incidences expected

 $\textit{\textbf{E}}_{\!\Sigma}$ and $\textit{\textbf{E}}_{\!f}$:

- Nearly identical
 - little difference between sections

*E*_h :

- (Significant) Improvement \leq 11 GeV
- Possible explanation: cutting out Landau fluctuations

CALICE & ILD for CEPC – CEPC WS, 25/10/2022

Vincent.Boudry@in2p3.fr

Previous work

- M. Reinhard PhD (2009, adv: J-C Brient)
 - On ILD SiW-ECAL
 - (5mm)² cells, 2 sections
 - GARLIC clustering (cleaning of outlier hits)

- Not obvious in all regions
 - overlaps, gaps, ...

Vincent.Boudry@in2p3.fr

CALICE & ILD for CEPC – CEPC WS, 25/10/2022

29/35

Molière Radius & Cell size

Resolution for 11 and 5.5 mm

Molière Radius for 5.5 and 11 mm

Vincent.Boudry@in2p3.fr

Ultimate Granularity ?

Studies by SID ECAL group (2021)

- Large area MAPS
- Pixels of 50×50 μ m² or 25×100 μ m²

arXiv:0901.4457

Updating the SiD Detector concept arXiv:2110.09965

Vincent.Boudry@in2p3.fr

MAPS & DECAL

FOCAL = 2 layers of MAPS

but How to build a full detector ?

- Services: Power + Cooling ?
 - Gains by going fully digital ?
- For what physical gain ?

 - Improved resolution ?

4 MIMOSA-26 / Layer CMOS sensors (IPHC)

- 6×6 cm²
- 30×30 µm² pixels
- 39 M pixels
 - = full readout

Technical feasibility

Vincent.Boudry@in2p3.fr

Detector optimisation for Higgs Factories

Continuous running ≠ Pulsed runnning

- Power × 100 !
- Low energy (90 GeV)
 - Lower energy less focused jets
 - Lower granularity needed (1–2 cm OK ?)
 - Lower dynamic range
 - Other criterions ? Tagging
 - ... but not so for the rest ($\geq \sim 250 \text{ GeV}$)
- Reduce the number of layers + thicker sensors
 - See "Small ILD" model
 - − 6''×500µm wafers \Rightarrow 8'' × 725 µm (resolution 1/⁵√d)

One size fit all ?

- Have a dynamic granularity ?

- Have a semi-digital readout ?
 - Hit counting for low energy
 - E measurement for high energies

Use full simulations to estimate fluxes :

- Occupancy, Power, Data ...
- ... for various hypothesis (\mathcal{L} , Granularity, ASIC technology, DAQ scheme, ...)

CALICE & ILD for CEPC - CLEOWS, 20/11

Conclusions

SiW-ECAL technological prototype

- does calorimetry with 15 (heterogeneous) layers
 - first showers, with filtering
- Numerous emerging issues
 - gluing, HV filtering at high energy
- − → New VFE boards
 - Cleaner PS & Clock distributions; more uniform
- DD4Sim model for CALICE prototype(s) ready
 - Flexible Geometry
 - Cell masking, Digitization (↔ Data) → ILD

Parameters can probably be optimized

- ECAL composition :
 - For single photons, for photons in Jets (with clustering)
 - For Tau decays
 - For Particle ID (with timing)
 - For pointing (Long Lived Particles)
- Energy reconstruction with high-granularity started on single electrons
 - Hit counting <u>seems</u> reliable for low (≤15 GeV) electrons on 15 layer prototype.
 - Needs combination of different E's measurements

Fluxes to be estimated for continuous operations

- On full simulation (ILD) \Rightarrow Power, Granularity, ...