

Katja Krüger (DESY)

CEPC workshop 2022 25 October 2022

Overview

- The CALICE Analog Hadron CALorimeter AHCAL
 - Physics Prototype
 - Engineering Prototype
 - Further Developments
- SiPM-on-Tile technology beyond Higgs Factories
 - CMS HGCAL
- Summary

Calorimeters for Higgs Factories

- goal: want to distinguish $Z \rightarrow jet jet$ from $W \rightarrow jet jet$
- requires $\sigma(E)/E \approx 3-4\%$
- can be reached by particle flow algorithms (PFA)
- for each particle within a jet: use the subdetector with optimal resolution
- need to avoid double counting and wrong merging
- need an imaging calorimeter!
- requirements for the calorimeter:
 - highly granular
 - reconstruction of neutral particles: good energy resolution
 - calorimeter has to be within magnet coil: very compact
- Scintillator tiles are a scalable, cost effective solution

The CALICE AHCAL

The Origin: AHCAL Physics Prototype

- The first large calorimeter based on scintillator tiles read out by SiPMs
 - WLS fibers in each tile
- Tested in many testbeams 2006-2011

AHCAL Physics Prototype: Results

DESY. SiPM-on-Tile Calorimetry | CPAD 2021 | Katja Krüger | 18 March 2021

AHCAL Technological Prototype

- highly granular scintillator SiPM-on-tile hadron calorimeter, 3*3 cm² scintillator tiles optimised for uniformity
- fully integrated design
 - front-end electronics, readout
 - voltage supply, LED system for calibration
 - no cooling within active layers -> power pulsing
- **scalable** to full detector (~8 million channels)
- geometry inspired by ILD, similar to SiD and CLICdp
- HCAL Base Unit: 36*36 cm², 144 tiles, 4 SPIROC2E ASICs
 - slabs of 6 HBUs, up to 3 slabs per layer

AHCAL Technological Testbeam Prototype

- Large enough to contain hadron showers
 - 38 active layers of 72*72 cm²
 - 4 HBUs per module
 - in total: 608 SPIROC2E ASICs, ~22000 channels
 - SiPMs: Hamamatsu S13360-1325PE
- All modules interchangeable
- Built with scalable production techniques in ~2 years
- Operated in beam tests with muons, electrons and pions at CERN SPS in 2018
 - 3 weeks of beam time
 - Collected O(100) mio events
 - Very stable running
 - Nearly noise free
 - < 1 per mille dead channels

AHCAL Technological Trototype at SPS Testbeam

Run: 60225 Event: 2829 Date: 09.05.2018 Time: 14:27:33.0000000

AHCAL Technological Prototype: Analyses

High granularity offers detailed look into hadron showers

- Used in particle ID based on Boosted Decision Trees
- Studies of shower shapes
- Application of the PandoraPFA Particle Flow Algorithm

Magenta: Charged Hadron Cyan: Neutral Hadron Grey: Unclustered Hits

AHCAL Prototype: Hit Time Measurement

New feature in AHCAL technological prototype: time measurement for individual hits

- Design resolution: ~1 ns
- SPIROC2E readout ASIC supports 2 bunch clock speeds
 - Testbeam mode: 250 kHz clock
 - More efficient for data taking in testbeams
 - Worse hit time resolution: ~2ns
 - ILC mode: 5 MHz
 - Adapted to ILC bunch structure
 - Better hit time resolution: ~0.8 ns
- Full exploitation in data analysis just started
- Most testbeam data so far taken in testbeam mode

Combined testbeam with CALICE SiW-ECAL

2 weeks of beam test at CERN SPS: 8-22 June 2022

- First common running of technological prototypes of SiW ECAL and scintillator AHCAL
 - 15-layer ECAL prototype, 5*5 mm² cells
 - 38-layer HCAL prototype, 30*30 mm² cells
- Successful synchronized data taking
- Muon data for calibration
- Energy scans for electrons and hadrons
- Milestone in our program reached!
- Future beam test program to be defined
 - Tungsten stack available

AHCAL Plans: Testbeam Measurements

Fully exploit timing capabilities

- Perform full set of testbeam measurements in ILC mode
 - First tests running already
- Develop reconstruction algorithms to better use hit time information

Tungsten Stack

- Data taken so far with steel absorber stack
- Tungsten would offer shorter showers
- Valuable input for hadronic shower models (ECAL)
- Plan to re-use tungsten absorber stack already used for physics
 protype

Further running with ECAL

• when silicon layers are complete

AHCAL Plans: Hardware Developments

Alternative scintillator geometry

- ILD will require two orders of magnitude more tiles than AHCAL prototype, one order more than CMS HGCAL
- Megatiles would allow larger units for mechanical assembly
- Challenge: reach good uniformity while keeping the cell-tocell light cross talk small
- Status:
 - Several generations of Megatiles produced
 - Last one shows reasonable uniformity and light yield, working on optimization of edge cells
 - One Megatile HBU included in 2022 testbeam setup
 - Plan to build a 2*2 HBU layer to study also Megatile-Megatile transition region

DESY. CALICE Scintillator HCAL | CEPC Workshop 2022 | Katja Krüger | 25 October 2022

Light yield

Page 14

AHCAL Plans: Hardware Developments

Common Readout

- Harmonise readout between CALICE SiW ECAL and AHCAL
- Reduce size of AHCAL interface boards
 - Current design is from 2007
 - Focus was on modularity
 - New SiW ECAL interface board (SL board)
 optimized for compactness
 - Plan to follow SiW design as much as possible
 - Some differences in powering concept
 - Additional LED calibration system in AHCAL
- Status: just started

AHCAL interface boards

36 cm

SiW ECAL SL board

AHCAL Plans: Hardware Developments

Alternative Readout ASIC (KLauS)

- Wide range of applications
- Possible application at circular Higgs factories
- Optimised for SiPMs with small pixels (10µm) -> possible application in scintillator ECAL
- Status:
 - First HBU with KLaus5 operated within AHCAL DAQ
 - KLauS6 with full functionality available

AHCAL technology for circular colliders

- Readout and powering concept of AHCAL technological prototype rely on beam structure of linear colliders
 - Switch between data acquisition and readout phases
 - Cell-wise auto-trigger
 - Power pulsing
 - Allows to have no cooling inside the active layers
- Continuous running at circular colliders would require significant modifications
 - Continuous readout will require higher bandwidth
 - Higher data rates may require trigger system
 - Higher power consumption will require more cooling
 - Likely: cooling within the active layers
 - Will have an impact on the homogeneity of the calorimeter
 - Depending on cooling concept, may need re-optimisation of the sampling structure

Scintillator Calorimeter for CEPC

2 weeks of beam test at CERN SPS: 19 October - 2 November 2022

- System of scintillator ECAL + scintillator HCAL for CEPC
- Granularity optimised for CEPC:
 - ECAL: 5*45 mm² strips -> effectively 5*5 mm²
 - HCAL: 40*40 mm²
- Readout electronics: SPIROC2E (developed for ILC)
- 38-layer scintillator-steel HCAL prototype assembled, tested with cosmics and ready this year
- 30-layer scintillator-tungsten ECAL prototype ready since 2 years
- Plan calibration runs with muons, energy linearity and resolution measurements with electrons and pions

SiPM-on-Tile calorimetry beyond Higgs Factories

SiPM-on-Tile in CMS HGCAL

- CMS calorimeter endcap will be replaced for HL-LHC by High-Granularity calorimeter
- synergy with high granularity calorimeter concepts developed for electron-positron colliders
 - Use SiPM-on-tile wherever radiation levels allow

Common Running of AHCAL & HGCAL silicon prototype

- In October 2018, collected hadron data with HGCAL silicon module prototypes and the AHCAL prototype
 - 28 layers HGCAL EE (silicon/lead), 12 layers HGCAL FH (silicon/steel), 39 layers AHCAL (scintillator/steel)
 - Comparison of simulations important to validate HGCAL performance extrapolations, publication in preparation

SiPM-on-Tile Technology for HGCAL

- New challenges:
 - radiation levels
 - data rates
 - operation at -30 degrees
 - Many different tile and board sizes
- Adaptation of AHCAL technologies to HGCAL
 - Readout with fast and rad-hard components
 - Careful design for large temperature variations (from assembly to operation)
 - More flexible and robust assembly procedures
 - Tile wrapping
 - Tile glueing

HGCAL SiPM-on-Tile Status & Plans

- Individual SiPM-on-Tile Modules have been produced and tested in the lab and with beams
 - Light yield
 - Noise of irradiated SiPMs, temperature dependence
- entering construction phase
 - engineering design, final choice & qualification of components
 - setting up of construction procedures (including quality control)
- Plans: received ~4000 pre-series SiPMs in Summer 2022
 - ~1000 for 15 tile modules of the same size
 - EM stack for beam tests
 - Validation of calorimetric performance
 - ~1000 for 15 tile modules forming a 30 degree sector
 - Cassette test
 - Validation of integration concept
- experience & infrastructure from construction & QC will be fed back to future designs of SiPM-on-Tile calos

Summary

- SiPM-on-Tile calorimetry offers high granularity and good energy resolution at reasonable cost
- Performance demonstrated with CALICE AHCAL physics prototype
- Engineering design demonstrated with CALICE AHCAL technological prototype
- SiPM-on-Tile technology can be adapted to different conditions
- CMS HGCAL will be the first detector-scale application of the technology
 - Invaluable experience for future experiments

Thank you!

Backup

Higgs Factories

- European Strategy Update identified Higgs Factory as high priority
- Linear & Circular Proposals

Deep Underground Neutrino Experiment

- DUNE Far Detector: Study neutrino oscillations
 - Large LAr TPCs
- Near Detector (ND): measure beam before oscillation
 - DUNE PRISM: 3 detectors of which 2 can be moved off-axis
 - ND-LAr: Liquid Argon TPC
 - ND-GAr: High Pressure GAr TPC, surrounded by ECAL and magnet
 - SAND: plastic scintillator target

SiPM-on-Tile for DUNE ND-GAr

ND-GAr

- Gaseous Argon TPC surrounded by ECAL and magnet
- Lower energy threshold than liquid Argon -> better to distinguish some models
- goal: detect π^o from neutral current interactions and neutrons from interactions of neutrinos with Argon nuclei
 - typical energies of a few 100 MeV
 - need good energy and direction measurement
- Large sampling ECAL with good energy and angular resolution, neutron sensitivity and sub-ns time resolution
 - Scintillator tiles and strips directly readout by SiPMs
 - New challenges:
 - Very low energies -> very thin absorber
 - Very large area -> incorporate strips
 - Neutron sensitivity

