
Status of CEPC Core Software

Wenxing Fang, Xingtao Huang, Tao Lin,
Weidong Li, Teng Li, Jiaheng Zou

2022.10

2022 International Workshop on the CEPC

Outline

 Introduction

 Overview of CEPCSW

 Progress and plans

 Summary

2

Key4hep: Foundation of CEPCSW

 HEP software usually consist of lots of applications
 Application layer of modules / algorithms /processors

performing physics task (PandoraPFA, FastJet, ACTS,...)
 Data access and representation layer including EDM
 Experiment core orchestration layer

(Gaudi, Marlin, ...)
 Specific components reused by many experiments

(DD4hep, Delphes, Pythia,...)
 Commonly used HEP core libraries

(ROOT, Geant4, CLHEP, ...)
 Commonly used tools and libraries

(Python, CMake, boost, ...)

 Turnkey software for future colliders
 An agreement at Future Collider Software Workshop (Bologna, June 2019)

 Software components sharing between different experiments
 CPEC, CLIC, FCC, ILC, STCF 3

Thomas Madlener, Epiphany Conference 2021

Overview of CEPCSW

 Based on Key4HEP

 Reuse and extend existing components

 Gaudi, EDM4hep, DD4hep, ...

 Implement the specific components for
CEPC

 Geometry, generator, simulation and
reconstruction algorithms, etc.

 Provide ready-to-work environment to
algorithm developers and physicists

 Porting algorithms from iLCSoft to
CEPCSW

 Integrate/develop more algorithms and
features

4
https://github.com/cepc/CEPCSW

Common Event Data Model: EDM4hep

 CEPC uses EDM4hep, the common EDM that can be used by all
communities in the Key4Hep project: ILC, CLIC, FCC-ee & FCC-hh ...

 Efficiently implemented, support multi-threading and potentially
heterogeneous computing

 Use podio to generate thread safe code starting from yaml description

5

CEPC Extension of EDM4hep

 Currently the EDM4hep does not include the EDM for drift
chamber dN/dx

 To facilitate dN/dx simulation/reconstruction, EDM4hep is
extended via the upstream machanism of podio

 The extended EDMs also can be used for TPC detector
6

EDM4hep:
TrackEDM4hep:

MCParticle

EDM4dc:
SimPrimary

IonizationCluster

EDM4dc:
TrackerData

EDM4dc:
TrackerPulse

EDM4dc:
Rec

IonizationCluster

EDM4dc:
RecDnDx

Monte Carlo Digitization Reconstruction
Waveform

Sim ionization and pulse
Rec pulse

Rec cluster

Status of CEPCSW

 CEPCSW is under rapid development
 Current version: v0.2.6
 CVMFS distribution: /cvmfs/cepcsw.ihep.ac.cn/prototype
 Git repo: https://github.com/cepc/cepcsw

 Current efforts are focused on supporting simulation and
reconstruction algorithms

 Most core software components are in place, while new
technologies are being developed to improve the software
and boost performance
 Heterogeneous Computing

 Machine Learning Integration based on ONNX

 Analysis framework based on RDataframe

 Automated Validation System
7

Heterogeneous Computing (1)

 Motivation
 Due to physical limits of transistors, CPU speed increases slowly.
 The CPU computing resources for data processing are limited.
 Current existing algorithms need code re-engineering to adopt

heterogeneous resources.

 TRACCC is a project below ACTS to demonstrate tracking chain
on different kinds of computing hardware (CPU/GPU/FPGA).

8

• CPU
• SYCL
• CUDA

https://github.com/acts-project/traccc

https://github.com/acts-project/traccc

Heterogeneous Computing (2)

 We plan to run the TRACCC seeding algorithm within the CEPCSW
software framework, look at the possibility to extend the algorithm to
accommodate the geometry of the CEPC pixel detector.

 At the same time, we would like to do some tests with EDM4hep to find
out the performance of the event data model in the heterogeneous
computing environment.

9

• SYCL enables the definition of data
parallel functions, which can be
offloaded to CPU/GPU/FPGA
devices, by providing required APIs
and runtime libraries.

• The oneAPI DPC++ is an extension
on top of SYCL. So it can provide a
unified programming model across
multiple hardware architectures.

Heterogeneous Computing (3)

 The first work which has been done is to run TRACCC in a standalone
environment. We managed to build and run TRACCC on both CPU/GPU.

 Then we integrate the TRACCC seeding algorithm to the CEPCSW by
writing a Gaudi algorithm as a wrapper.
 With GCC, we can compile the algorithm into a component library.

 Then another library containing the SYCL-based implementation, which the Gaudi
algorithm depends on, was created via clang++ from DPC++.

10

Config Hardware OS Compiler SYCL backend Bulid traccc Run traccc

1 Intel CPU
(IHEP login node)

CentOS 7.8 LCG 101 (GCC 10.3 + clang
12) + oneAPI DPC++

CPU OK OK

2 Intel CPU + NVIDIA
RTX 8000 (workstation)

CentOS 7.9 LCG 101 (GCC 11.1) +
intel/llvm (2021-12)

CUDA 11.2 OK OK

CEPCSW + GCC Intel oneAPI + DPC++

Gaudi
Algorithm

SYCL based
Algorithm

A shared libraryA component library

Even though two different
compilers were used, the
Gaudi algorithm can be run
successfully and the SYCL
code is invoked properly.

Machine Learning Integration (1)

 Motivation

 Integrate different pre-trained machine learning models into the
framework

 ONNX[1] is an open format built to represent machine learning
models.

 Support to convert from other models to ONNX, such as Tensorflow,
PyTorch etc.

 Easy to run inference on different platforms, such as ONNX Runtime,
ONNX MLIR etc.

 Some applications of ONNX in HEP

 Fast simulation in Geant4 using ONNX inference interface [2]

 Fast Inference for Machine Learning in ROOT TMVA [3]

11

[1] https://onnx.ai
[2] Anna Zaborowska et al., Fast Simulation : from Classical to Machine Learning Models
[3] Sitong An et al., Fast Inference for Machine Learning in ROOT/TMVA

https://onnx.ai/
https://indico.cern.ch/event/1052654/contributions/4525299/attachments/2310881/3932468/Geant4_Collaboration_16_09_2021.pdf
https://indico.cern.ch/event/773049/contributions/3476168/attachments/1937600/3211545/TMVA_Fast_Inference_Poster.pdf

Machine Learning Integration (2)

 Example has been provided
in CEPCSW
 Based on ONNX C++ runtime

 An algorithm only needs to
 Manage the session object of

ONNX runtime

 Specify the model path.

 Take care of the input and
output data

12

Development of Analysis toolkit based on RDataFrame

 RDataFrame provides powerful and flexible way analyzing data
 Support declarative programming

 Fastest way to analyze data

 Full support analysis in both Python and C++

 Actively used by FCC-ee for flavour, higgs and top physics

 Development of analysis tool for CEPCSW
 Use CEPCSW to convert LCIO data produced with Marlin to EDM4hep

 Common components (functions) for analyzing EDM4hep data are
being developed
 Analysis function code in C++: event selection, filtering, vertexing,

PID, Jet clustering, producing ROOT ntuples,…
 Python for configuration: define analysis functions, output variables,

input samples, etc…

13

Development of Analysis toolkit based on RDataFrame

 The development starts with a inclusive analysis: Higgs recoil
analysis and Higgs width measurement in e+e- -> Z(mumu)H

 Basic functionalities are tested: same results obtained from
Marlin and RDataframe

 Performance tests are performed with multi-threading enabled

14
Scalability of RDataFrame with multithreading enabled

Ideal
RdataFrame

Automated Validation System

 An automated validation system is being developed for software
validation at different levels
 Unit test, integrated test, performance test, physical validation etc.

 A toolkit is developed for building software validation workflow
 Provide interfaces to define and run unit tests

 Support performance profiling

 Support results validation based on statistical methods

 Automated physical validation system based on massive data
production is being developed

15

Automated Validation System

 The validation system is being integrated with the Github
Action system
 Full validation workflow can be triggered by commit/merge-request

 A web-based monitoring dashboard is also being developed

 ~ O(200) cores are now available for running validation jobs

16

GitHubPull
Request

Commit
Code Central

Database

Build
installation CVMFS

Docker Performance
Testing

DIRAC
(shared)

Kubernetes
(dedicated)Web

Portal

GitHub
Actions

Build
Servers

Test
Servers

READY

TODO

Summary

 CEPCSW framework is being developed in collaboration with the
Key4hep project

 Most CEPCSW core software components are in place and function
well to support detector simulation and reconstruction studies

 Latest developments are focused on:

 EDM extention

 Heterogeneous computing

 Integration of ML models

 RDataFrame based Analysis framework

 Automated validation system

17

Welcomed to joining CEPCSW!
We hope to work together with developers in the community.
https://github.com/cepc/cepcsw

https://github.com/cepc/cepcsw

Backup

Data Processing Framework: Gaudi

 Modular design and well defined component interfaces

 Three basic categories of data characterized by their lifetime

 Seperation of algorithm, transient and persistent data in the
event loop

19

Geometry Description Toolkit: DD4hep

 DD4hep provides complete detector description in CEPCSW

 Provides geometry, materials, visualization, readout, calibration...

 Single source of information to ensure consistent description

 In simulation, reconstruction, analysis

 Supports full experiment life
cycle

 Detector concept development,
detector optimization, construction,
operation

 Facile transition from one stage
to the next

 See latest developments:
https://github.com/AIDASoft/DD4hep

20

Data Input/Output

 The default EDM4hep data format: ROOT

 k4FWCore: the default data I/O components

 PodioDataSvc: read/write podio data collections in ROOT

 DataHandler: register data collections to Gaudi

 k4LCIOReader: read LCIO data generated by Marlin

 Data converters

21

DataHandle PodioDataSvcUser
Algorithm

DataWrapper
[PLCIO Objs]DataWrapper

[PLCIO Objs]DataWrapper
[EDM4hep Objs]

ROOT Data

LCIO Datak4LCIOReader

LCIO Library

Gaudi TES LCIO ObjsEDM4hep Objs

