

CMS and LHCb Calorimeters Run3 and Phase-II Upgrades status and plans

E. Picatoste

CEPC 25/10/2022

Introduction: CERN, the LHC, CMS and the LHCb

• Compact Muon Solenoid (or CMS):

- General-purpose detector designed to observe any new physics phenomena
- Barrel form designed to detect muons accurately with the most powerful solenoid magnet made

• LHCb:

- LHC beauty experiment
- Study of CP violation and rare decays in the b-sector.
- Single-arm forward spectrometer

25 October 2022

CEPC - CMS and LHCb Calorimeters Run3 and Phase-II Upgrades status and plans

Contents

1) Status and Overview of the CMS HGCAL

3) The LHCb Upgrades-I and II

CEPC - CMS and LHCb Calorimeters Run3 and Phase-II Upgrades status and plans

Status and Overview of the CMS HGCAL

Check previous presentation by Huaqiao ZHANG

CEPC – CMS and LHCb Calorimeters Run3 and Phase-II Upgrades status and plans

The High Luminosity LHC

CMS HGCAL: Upgrade Challenges

- The HL-LHC will integrate ten times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors
- Radiation hardness
 - Fluences of up to $10^{16}~n_{eq}^{}/cm^2$ and doses of up to 2 MGy
 - Selection of silicon sensors to operate reliably (at -30°C)
- Granularity is key for correct assignment of E deposits to tracks
 - 26 electromagnetic layers and 21 hadronic layers
 - Cell sizes
 - ECAL and most of HCAL: Si cell sizes of ~0.5-1 cm²
 - Remainder HCAL: plastic scintillators os 4-30 cm²
- Pileup suppression with timing
 - Concept: identify high-energy clusters, then make timing cut to retain hits of interest
 - Design HGCAL to obtain a ~30ps timing measurement for multi-MIP energy deposits

ICCUB 🖉

CMS HGCAL: Lateral Structure, Cassettes

- Silicon and scintillator modules assembled into cassettes
 - Glued stack of baseplate, sensor and readout hexaboard
 - Relative alignment within ~50um achieved with gantry based automated assembly
 - Electrical connections are done with wire-bonds
 - Scintillators are an economical solution for low radiation areas
 - 240k cast or molded tiles, 4-30cm²
 - Read-out by SiPMs (2,4,9mm²) assembled on PCBs
 - Successfully operated tileboards in beam tests
- Supported and cooled by copper cooling plate
 - Cooling with CO_2 to -35°C
 - Cooling performance verified
- Data from modules collected by motherboards
- Cassettes house all services and DC2DC converters

CMS HGCAL: Silicon Sensors

Design

- Design has been finalized in 2021
- Hexagonal shape to maximize usage of circular wafers
- 8" wafers to lower cost wrt 6" (new production line with Hamamatsu)
- Planar, DC-coupled, p-type sensors (more radiation hard than n-type)
- Thin sensors collect more charge at high fluence
- Radiation Hardness Qualification
 - In 2020/21 irradiated 40 sensors with neutrons up to $10^{16}~n_{eq}/cm^2$ at Rhode Island Nuclear Science Center, US
 - Most sensors met specs and identified the best production process (publication soon)
 - ~300 pre-series sensors mostly already delivered
- Multi-geometry sensor design
 - To save on the number of masks and all the associated tooling, we designed multi-geometry sensors (MGS)
 - All dicing lines have been collected on a single design and each of the resulting islands have been protected by an individual guard ring
 - Prototype testing on-going, ordering pre-series soon

LD: ~200 cells of 1.2cm2 300um & 200um thickness HD: ~450 cells of 0.5cm2 120um active thickness

ICCUB

CMS HGCAL: Silicon Electronics

- 10bit ADC below ~50fC, 12bit ToT above
- Timing information (ToA) down to 25ps
- Radiation hard (TID <350 Mrad)

25 October 2022

CMS HGCAL: Test Beam

- First large-scale test of more than 90 HGCAL • modules data taking at CERN (Oct 2018).
- Setup exposed to e^+ and π beam of energies • ranging from 20 to 300 GeV and 200 GeV µ beams.

 $\sigma_{\theta_{x}} \, [\text{mrad}]$

30

20

15

10

- Results
 - Stochastic term is 22%
 - Constant term of 0.6%
 - Linearity within 3%
 - Good agreement between data and simulation, also for angular resolution

CMS HGCAL: Conclusions and plans

- HGCAL will be the first large scale calorimeter with Si and SiPM-on-tile technologies providing unprecedented granularity and time resolution
- Lots of progress since the Technical Proposal (2015) and the Technical Design Report (2018)
- Beam tests confirm expected performance
- Several key components approach end of prototyping phase
 Sensors, SiPMs, HGCROC
- Timeline:
 - EDR in late 2022 or early 2023
 - mass-production to start in 2023 (sensors, scintillator tiles, electronics)
 - module assembly to start beginning of 2024
 - cassette assembly to start beginning of 2025
 - cassette assembly finished late summer 2026
 - first endcap ready for lowering March 2027
 - second endcap ready for lowering July 2027

Upgrade of CMS Barrel Electromagnetic Calorimeter for LHC Phase-II

CMS Barrel ECAL Overview

- Lead tungstate (PbWO₄) crystal calorimeter
- Provides excellent energy resolution in harsh radiation environment
 - Achieved 1% mass resolution for SM Higgs in γγ decay channel
- Hermetic and compact detector with coverage up to $|\eta| = 3.0$
- Barrel region:
 - Contains 61,200 crystals across 36 supermodules
 - Uses avalanche photodiodes (APDs) as photodetectors
- Endcap region:
 - Contains 14,648 in 4 half-disk "Dees"
 - Uses vacuum phototriodes

CMS Barrel ECAL Phase II Upgrade Overview

- Replace the endcaps with a high granularity calorimeter
- Refurbish ECAL barrel supermodules during Long Shutdown 3 (2026-2028)
- Keep the lead tungstate crystals and APDs in the barrel
 - Reduce temperature from 18°C to 9°C to keep noise below 250 MeV
- Replace the on and off detector electronics
 - Use new radiation hard ASICs with faster pulse shaping and factor of 4 increase in sampling rate:
 - Reduce impact of out of time pileup and limit increase in APD noise
 - Provide improved spike rejection via pulse shape discrimination
 - Provide 30 ps timing resolution for E > 50 GeV
 - Streaming Front-end board providing single crystal info to trigger via high speed radiation hard optical links (IpGBT)
 - More advanced algorithms in off-detector FPGAs

14

CEPC – CMS and LHCb Calorimeters Run3 and Phase-II Upgrades status and plans

ECAL Front End electronics implementation

- Lead tungstate crystal longevity
 - Main concern: ageing due to radiation
 - Scintillation mechanism is not affected by radiation
 - Radiation creates crystal defects which reduce the crystal transparency and therefore light output
 - Effect is monitored and corrected using a dedicated light injection system
 - MC simulations have been used to predict the light output in Phase II
- Avalanche Photodiode (APD) Longevity
 - Radiation damage to APDs:
 - Gamma rays creating surface defects which increase surface current and reduces quantum efficiency
 - Hadrons creating bulk damage causing an increase in the bulk current
 - Main concern for HL-LHC is the increase of dark current
 - Electronic noise depends on square root of bulk current
 - Can be mitigated by reducing the operating temperature

VFE multichannel

- Received ~600 packaged LiTE-DTU v2 in February
- All 600 tested with 98% passing
- SEU test performed at CRC Louvain
 - No I2C errors, No PLL loss of lock

- CATIA: pre-amp (TIA) with fast pulse shaping capabilities and 2 gain outs (1x and 10x)
- LITE-DTU: Data conversion, compression and transmission ASIC
 - Two 12-bits ADCs, 160 MS/s data conversion
 - Lossless data compression
 - Look-ahead algorithm
- VFE:
 - Contains 5 x CATIA and LiTE DTU chips
- APD, CATIA and PCBs Pilot run of 8 VFE v3 have been tested
 - Initial noise and timing measurements are compatible with 30 ps timing for E > 50 GeV
- Larger production launched at May 2022

- Test Beam 2021
- Single ECAL tower (5x5 crystal matrix) with Phase II CATIA v1.2 and LiTE DTU v1.2
- Electron beam with energies from 25 to 250 GeV
- Energy and timing resolution meet requirements

CMS Barrel ECAL Upgrade Phase-II: Conclusions and plans

- Both the on and off detector electronics will be replaced in the CMS ECAL for HL-LHC in order for the current performance to be maintained
- Full featured ASICs have been received
 - Initial test results are good
- Plans for this year:
 - System test (>400 channels) with spare supermodule
 - Supermodule test beam with electrons and pions
 - Engineering design review to provide green-light for the production of the front-end ASICs and electronics boards
 - Continue development of BCPv2 and associated firmware
- Will have production ready (and tested) versions of ASICs and on detector boards by the end of the year
- All barrel calorimeter components are on track for installation during LS3

The LHCb Upgrades-I and II

CEPC – CMS and LHCb Calorimeters Run3 and Phase-II Upgrades status and plans

LHCb Upgrades timeline

- Upgrade I Run 3
 - Increase the luminosity from $4x10^{32}$ cm⁻²s⁻¹ to $2x10^{33}$ cm⁻²s⁻¹
 - Detectors and electronics upgrades needed
 - Trigger and DAQ redefined

- Consolidation/enhancement phase in LS3
 - First stage of Upgrade II "Upgrade Ib"
 - No luminosity change (baseline)
- Main installation phase in LS4
 - Full Upgrade II (luminosity increase)

LHCb Phase-I upgrade strategy: trigger

- The 1 MHz L0 trigger saturates physics processes yield with increasing luminosity
- At high luminosity, need to increase p_T threshold to remain within 1 MHz

- SOLUTION:
- Remove the first
 level hardware
 trigger
- Event selection will
 be based of full
 event
 reconstruction

25 October 2022

LHCb Phase-I upgrade strategy: Calorimeter detector

- 2 sub-detectors: ECAL, HCAL were kept
 - PS/SPD dismantled and not used in the Upgrade I
- Granularity ٠
 - ECAL: 6016 cells
 - HCAL: 1488 cells

ow 2 ow 3 row 4

row 5

particles

WLS fibers

light guide

Detection

ECAL Shashlik: scintillator HCAL: Tilecal technology tiles and lead plates iron+scintillator spacers scintillators master plate

PMT R-7899-20, HAMAMATSU

CEPC – CMS and LHCb Calorimeters Run3 and Phase-II Upgrades status and plans

Phase-I upgrade strategy: Calorimeter electronics

FEB processing @ 40 MHz

- → Each FEB receives clock, commands and configuration from 3CU (backplane) and provides data on 4 optical links (mono-dir) to TELL40
- \rightarrow Data from 1 FEB is made of
 - Signal from PMTs is integrated by the ICECAL chip
 - ADC values of the 32 channels
 - The Low Level Trigger (LLT), i.e. the result of a sum/comparison that can be used by the software trigger in the PC farm
- PMT gain 1/2.5 (reduce ageing)
- ICECAL ↑ x2.5 electronics gain
 - Iower noise!
- 4 ch
- 2 alternated subchannels to avoid dead time

25 October 2022

CEPC - CMS and LHCb Calorimeters Run3 and Phase-II Upgrades status and plans

ICFCAL

Phase-I upgrade: synchronization and calibration

Synchronization

Independent integration time per channel

0.75

0.50

0.21

0.0

-0.25

-0.50

-0.75

-1.00

.......

- Depends on PMT bias voltage, particle arrival time, cable lengths, ...
- Require stable beams and store window of consecutive **bunches**
- Synchronization is performed studying the spill over in previous and following BX

Calibration

- LED system used for basic gain adjustment and for monitoring the ageing of PMTs
- Detailed gain calibrations performed with π^0 for ECAL and Cs dedicated runs for HCAL
- Initial PMT HV voltages were derived from Run 2 data
- Newer HV values already derived from detector data and applied

200

250

40

Signal shape

from phase

scans

3000

> 2500

2000

1500

1000

.......

Motivation for the Upgrade II of the LHCb ECAL

Requirements for the Upgrade II: operation at L = 1-2 x 10³⁴ cm⁻²s⁻¹

- Sustain radiation doses up to 1 MGy and ≤ 6⁻¹⁰¹⁵cm⁻² for 1MeV neq/cm² at 300 fb⁻¹
- Keep at least current energy resolution $\frac{\sigma(E)}{E} \sim \frac{10\%}{\sqrt{E}} \oplus 1\%$
- Pile-up mitigation crucial
 - Timing capabilities with O(15) ps precision, preferably directly in the calorimeter modules
 - Increased granularity to reduce occupancy
- Respect outer dimensions of the current modules: 12x12 cm²
- Up to 30kch + 15kch with timing layer (2-tier longitudinal segmentation all around)
- Detector R&D looks into:
 - new topology (SpaCal/long. segment.)
 - high density absorber materials (W/Pb)
 - fast radhard scintillator (garnet:GFAG)
 - enhanced WLS (radiation tolerance)

200kGy

< 40 kGy

30mm

40-120mm

SpacalPb

Shashlik

LHCb ECAL Upgrade II: SpaCal-W channel prototype

- SpaCal prototype module with W absorber and garnet crystal fibers:
 - Pure tungsten absorber with 19 g/cm³
 - 9 cells of 1.5x1.5 cm² (RM ≈ 1.45 cm)
 - 4+10 cm long (7+18 X₀)
 - Reflective mirror between sections

cm³

25 October 2022

CEPC - CMS and LHCb Calorimeters Run3 and Phase-II Upgrades status and plans

LHCb ECAL Upgrade II: SpaCal-Pb channel prototype

- SpaCal prototype module with Pb absorber and polystyrene fibers:
 - 9 cells of 3x3 cm2 (RM ~ 3 cm)
 - 8+21 cm long (7+18 X₀)
 - Reflective mirror between sections
 - Kuraray SCSF-78 round fibres \emptyset = 1.0 mm
 - Light guides 10 cm long

SPS 2022 Test beam results

Energy Resolution Pb/Polystyrene 3°+3°

ICCUB

LHCb ECAL Upgrade II: Shashlik

- Shashlik technology can be used in Upgrade II in outer part of ECAL and provide timing information
- In order to reduce effect of shower longitudinal fluctuations, two versions of shashlik were prepared for 2019 beam test
 - Split WLS fibers (7+18 X₀, mirrored fiber ends)
 - Continuous WLS fibers

 Current Shashlik modules have good time properties, further improvement by replacing WLS fibres by faster ones (Kuraray WLS YS2 and YS4)

Double-sided readout (CERN SPS 2021

Single-sided readout (CERN SPS 2022)

LHCb Upgrade-II: photodetectors and readout

- Baseline solution follows the same scheme as in current ECAL:
 - Minimal light transport with PMT sensors near modules,
 - All electronics in crates on top of the detector (reduced radiation),
 - Connection via analog link (coaxial) ~12m long (up to 20m considered).
- ASIC/chipset in TSMC 65nm with separate processing paths:
 - Energy path following current ICECAL scheme (mostly analog processing),
 - Timing path based on waveform sampling with analog memory arrays.
- Amplifier + Shaper circuit included on the PMT base or FEB under consideration, to compensate cable attenuation, improve SNR, reduce spill-over effort and split the signal between the energy and time paths.

LHCb Upgrade-II: PMTs

- Different detector zones, different needs (gain, ageing, geometry)
- Stringent geometry in the innermost zone (15mm)
- Ageing is an important limit
- TTS order tens of ps homogeneous over cathode.
 - Metal channel dynode (MDC) devices comply.

Cell size case	Channel technology	High G (Imax lim.)	Low G (Imax lim.)
15 mm	SPACAL W	4k	1k
30 mm	SPACAL Pb	4k	500
40, 60, 120 mm	Shashlik	100k	11k

• Studying in detail the PMT response for the present channel prototypes

W-poly pulse shapes R14755U vs TILECAL @ 60 GeV 1.0 TILECAL (60 GeV) 0.9 R14755U (60 GeV) **Single Side Rise Time** 0.8 PRELIMINARY (10-90%) [ns] 0.7 [a^{.n}] Readout TILECAL 3.6 0.5 0.4 R14755U-100 1.8 0.3 0.2 0.1 0.0

20

25

PMT: R11187

10

time [ns]

15

PMT: R14755U-100

-5

LHCb Upgrades I and II status summary

- Phase-I Upgrade. Increase of luminosity from 4x10³² cm⁻²s⁻¹ to 2x10³³ cm⁻²s⁻¹
 - Remove the first level hardware trigger and the event selection will be based of full event reconstruction
 - The ECAL and HCAL are maintained but PS/SPD were removed
 - New ECAL electronics were developed to cope with the 40MHz data processing and the gain reduction for PMT live time increase
- Phase-Ib and -II
 - The ECAL will need an upgrade to sustain a much higher radiation dose, to mitigate pile-up, to reduce occupancy and keep good energy resolution
 - New technologies based in the Shashlik and Spaghetti modules have been proposed which offer radiation hard and fast response capabilities
 - Phase-Ib will be dedicated to the inner ECAL and Phase -II to the full detector
 - SPACAL and Shashlik prototypes have been developed and validated in Beam Tests with energy and time resolution within specifications
 - Different PMTs under study: R11187, R15755U-100
 - The readout electronic architecture is proposed, and the design is already started
 - Energy path ASIC similar to the one used in phase-I upgrade
 - Time path ASIC includes an analog memory based in a sampling capacitor array

Thank you for your attention!

Front End (FE)

Back End (BE)

- Allows streaming of full granularity data off-detector at 40 MHz
 - Not possible in the current Phase I detector
- Sends clock to VFE directly from controller lpGBT
- I2C via controller-responder chain
- Monitors APD dark current
- FE v3 is close to the final version

• Barrel calorimeter processor (BCP)

- Combines trigger and DAQ functionality and provides clock and control signals to the FE electronics
- Each board handles signals from 600 crystals
- Uses commercially available FPGAs
- Algorithms being developed using high level synthesis to produce trigger primitives
- BCP v1 (KU115 FPGA) is being used for integration tests with VFE/FE boards and DAQ
- BCPv2 (one VU13P FPGA)
 - Increased signal processing capabilities (more memory, logic cells,...)
 - Schematics under development
- Testing results (including timing performance)
 are good

ICCUB 🖉

LHCb Run 1-2 LHCb calorimetry System

- \rightarrow Solid angle coverage 300x250 mrad
- \rightarrow Distance from interaction point ~12.5 m
- \rightarrow Four sub-detectors: SPD, PS, ECAL, HCAL
- \rightarrow Based on scintillator/WLS (with PMTs)

- \rightarrow **L0 trigger** on high pT, e±, π 0, γ , hadron
- \rightarrow Precise energy measurement for e± and γ
- \rightarrow **Particle identification**: e±/γ/hadron, and contributes to Muon ID (HCAL)