

Overview of Beauty Physics Experiments

Yuehong Xie Central China Normal University

CEPC2022, 24-28 October 2022

Outline

- Flavour physic and requirements on detector
- CP violation and CKM unitarity test
- Rare decays and LFUV
- Conclusions

Disclaimer: many interesting studies on charm, QCD and hadron spectroscopy are not covered.

Flavour mysteries

- □ Yukawa couplings of Higgs to quarks \Rightarrow CKM matrix
- > The source of CP violation in the SM
- > Accommodating many experimental results with 4 parameters

Unexplained

- > Dynamic origin of hierarchies in quark masses & mixing
- Matter-antimatter asymmetry of the universe

 $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

Flavour as a window to new physics

Unique strength of indirect searches

- Exploring NP scale far above TeV
- Probing phase of NP couplings
- Distinguishing NP scenarios

□ A rich source of information

Interesting processes

- Tree processes: SM benchmarks
- Loop processes: sensitive to NP
- Forbidden processes: only seen in NP

Generic bounds on New Physics scale (for $g_{X} \sim 1$)

Key observables

- Decay rates and ratios
- > CP asymmetries
- Angular or time-dependent coefficients
- > Lifetimes, polarizations, ...

Top priority: CPV in neutral B decays

□ Time-dependent CP asymmetry

$$A_{f_{CP}}(t) = \frac{G(\overline{B}^{0}(t) \to f_{CP}) - G(B^{0}(t) \to f_{CP})}{G(\overline{B}^{0}(t) \to f_{CP}) + G(B^{0}(t) \to f_{CP})}$$
$$\mu S \sin(Dm_{d}t) - C \cos(Dm_{d}t)$$

$$C = \frac{1 - |/_{f_{CP}}|^2}{1 + |/_{f_{CP}}|^2}$$
$$S = \frac{2 \text{ Im }/_{f_{CP}}}{1 + |/_{f_{CP}}|^2}$$

□ Need to determine

- > Initial flavor of the *B* meson: kaon and lepton PID essential
- > Decay time of the *B* meson: vertex reconstruction essential

Requirements on detector

- Ability to find signals and suppress background
 - > Good momentum and mass resolution
 - > Excellent particle identification
 - Flexible and efficient trigger (for hadron colliders)
- □ Ability to identify the initial B flavor
 - > Excellent particle identification for e^{\pm} , μ^{\pm} , K^{\pm}
- Precise measurement of proper decay time
 - > Excellent vertex resolution

⇒ Very demanding on the capacity of track & vertex reconstruction, hadron & lepton identification

Typical B physics detectors

Produces ~ few × 10^{12} $B\bar{B}$ per year (Run III)

Produces $10^{10} B\overline{B}$ per year at $\Upsilon(4S)$

Both use silicon technology for vertexing and RICH for hadron PID!

Flavour tagging & time reconstruction

Belle II

Tagging power $\epsilon (1 - 2\omega)^2 \sim 4 - 5\%$ Time resolution $\sim 40 - 50$ fs (c.f. B⁰_s oscillation period ~ 350 fs) Tagging power $\epsilon (1 - 2\omega)^2 \sim 35\%$ Time resolution ~ 150 fs

Magic LHCb RICHs

LHCb status

Data taking Run 1&2

Data taking in 2022

LHCb Integrated Luminosity in p-p in 2022

05/07: First collision 23/08: LHC incident 24/09: Restart 21/10: VELO closing 27/11: End of run March 2023: Restart

Rings in RICHs

Closed VELO

LHCb long term plan

Accumulate 25 fb⁻¹ after Run 3, 50 fb⁻¹ after Run 4, 300 fb⁻¹ after Upgrade II
 Measure CKM parameters and study rare decays with unprecedented precision

BELLE II status and plan

Data taking 2019-2022

\Box Interesting results with 0.5 ab^{-1} recorded

- > Charm lifetime measurements
- \succ γ(φ₃) measurement with B⁺ → D(K⁰_Shh)h⁺
- > Search for $B^+ \to K^+ \nu \bar{\nu}$
- > Time-dependent CPV measurements in $B^0 \rightarrow J/\psi K_S^0, \pi\pi, \rho\rho, K_S^0 K_S^0 K_S^0$

□ Expect 5 (50) ab^{-1} before (after) upgrade

 $\left\{egin{array}{l} au(D^0) = (410.5\pm2) {
m fs} \ au(D^+) = (1030.4\pm5.6) {
m fs} \ au(\Lambda_c^+) = (203.2\pm1.1) {
m fs} \end{array}
ight.$

World best meas. achieved thanks to new PXD layers.

Phys. Rev. Lett. 127 (2021)

Phys. Rev. Lett. 27 (2021) 181802

CP violation and **CKM** unitarity test

Test unitarity of the CKM matrix

Re

1

B meson mixing

 $B_q^0 - \overline{B}_q^0$ mixing

$$\Delta m_s = 17.7656 \pm 0.0057 \text{ ps}^{-1}$$

LHCb Run 1, Nature Physics 18 (2022) 1 SM: $\Delta m_s = 18.4^{+0.7}_{-1.2} \text{ ps}^{-1}$

$$\begin{vmatrix} B_{L}^{q} \end{pmatrix} = p \begin{vmatrix} B_{q} \end{pmatrix} + q \begin{vmatrix} \overline{B}_{q} \end{vmatrix}$$
$$\begin{vmatrix} B_{H}^{q} \end{pmatrix} = p \begin{vmatrix} B_{q} \end{pmatrix} - q \begin{vmatrix} \overline{B}_{q} \end{vmatrix}$$

$$\Delta m_q = m_L - m_H$$

LHCb Run 1, EPJC 76 (2016) 412 SM: $\Delta m_s = 0.533^{+0.022}_{-0.036} \text{ ps}^{-1}$ Luzio et al., JHEP 12 (2019) 009

CPV in B^0 decays: $\phi_d = 2\beta$

Time dependent CP violation: $A_{CP}(t) \propto C \cos(\Delta m_q t) + S \sin(\Delta m_q t)$

 $b \rightarrow c \overline{c} s$ processes are studied with increasing precision

SM: $\sin 2\beta = 0.70 \pm 0.02$ SM: $\sin 2\beta = 0.731^{+0.029}_{-0.016}$ LHCb combined $\sin 2\beta = 0.731 \pm 0.035 \pm 0.020$ **BELLE II** $\sin 2\beta = 0.720 \pm 0.062 \pm 0.016$

CP violation in B_s^0 : $\phi_s = -2\beta_s$

Huge efforts to measure ϕ_s

Indirect: $\phi_s = -0.037 \pm 0.001$ rad

Experimental uncertainty much larger than that of the indirect value from CKM fit. Tension between experiments in lifetimes.

Observation of time-dependent CP violation in $B_s^0 \rightarrow K^+ K^-$

Prospects for ϕ_q in $b \rightarrow c\overline{c}s$

- Precision projections
- > LHCb with 50 (300) fb^{-1}

 $\sigma(\phi_s) \sim 6$ (3) mrad

 $\sigma(\sin 2\beta) \sim 0.006 \ (0.003)$ LHCb, CERN-LHCC-2018-027

> BELLE II with 5 (50) ab^{-1}

 $\sigma(\sin 2\beta) \sim 0.012 \ (0.005)$ BELLE II, arXiv:1011.0352

A deep understanding of the penguin pollution is necessary

Possible strategy: SU(3) analysis of $b \to c\bar{c}s$ and $b \to c\bar{c}d$ modes $B_s^0 \to J/\psi K_s^0, B^0 \to J/\psi \pi^0, B^+ \to J/\psi \pi^+$ for $B^0 \to J/\psi K_s^0$ Globa $B^0 \to J/\psi \rho, , B_s^0 \to J/\psi \overline{K}^{*0}, B_s^0 \to J/\psi \overline{K}^{*0}$ for $B_s^0 \to J/\psi \phi$ Globa Bruyn, Fleischer, JHEP 03 (2015) 145; LHCb, Phys. Lett. B 742 (2015) 38

Global analysis, considering SU(3) symmetry breaking

Integrated Luminosity $[fb^{-1}]$

300

▼

×

 γ from $B^{\pm} \rightarrow D(h^+h'^-\pi^0)h^{\pm}$

Method: determine γ from rates of $B \rightarrow Dh$ decays $\Gamma(B^{\pm} \rightarrow Dh^{\pm}) \propto |r_D e^{-i\delta_D} + r_B e^{i(\delta_B \pm \gamma)}|^2$ γ, δ_B, r_B : to be measured δ_D, r_D : external inputs

- Eight modes
- D parameters from BESIII using quantumcorrelated D⁰ D⁰
- Two solutions. The one close to expectation is

 $\gamma = (56^{+24}_{-19})^{\circ} \quad \delta_B = (122^{+19}_{-23})^{\circ}$

JHEP 07 (2022) 099

Mode	Yield
$B^{\pm} \to [K^{\pm}K^{\mp}\pi^0]_D\pi^{\pm}$	4026 ± 77
$B^{\pm} \to [\pi^{\pm}\pi^{\mp}\pi^0]_D \pi^{\pm}$	14180 ± 140
$B^{\pm} \to [K^{\pm}\pi^{\mp}\pi^0]_D\pi^{\pm}$	140696 ± 589
$B^{\pm} \to [\pi^{\pm} K^{\mp} \pi^0]_D \pi^{\pm}$	293 ± 27
$B^{\pm} \rightarrow [K^{\pm}K^{\mp}\pi^0]_D K^{\pm}$	401 ± 29
$B^{\pm} \to [\pi^{\pm}\pi^{\mp}\pi^{0}]_{D}K^{\pm}$	1189 ± 51
$B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}\pi^{\bar{0}}]_D K^{\pm}$	12265 ± 158
$B^{\pm} \to [\pi^{\pm} K^{\mp} \pi^0]_D K^{\pm}$	155 ± 19

 γ from $B^{\pm} \rightarrow D(K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp})h^{\pm}$

- ➤ Model independent determination of γ in bins of D → K3π phase space
- > Large CP violation effect in the disfavoured $B \rightarrow DK$ mode
- D decay coherence factors and average strong-phase differences taken from BESIII and CLEO-c
 - ⇒ Limiting factors
- One of the most precise determinations in a single mode

 $\gamma = (54.8^{+6.0}_{-5.8} \, {}^{+0.6}_{-0.6} \, {}^{+6.7}_{-4.3})^{\circ}$

arXiv:2209.03692

LHCb γ combination

 Using Gammacombo package:
 frequentist approach with 173 beauty and charm observables to determine 52 parameters

 $\succ \gamma$ and charm mixing parameters determined

 $\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$ $x_D = (0.398^{+0.050}_{-0.049})\%$ $y_D = (0.636^{+0.020}_{-0.019})\%$ LHCb-CONF-2022-003

Tension between *B* categories (2σ)

> CKMFitter (meas. not in fit) $\gamma = (65.5^{+1.1}_{-2.7})^{\circ}$

 γ from $B^{\pm} \rightarrow D(K_S^0 \pi^+ \pi^-) h^{\pm}$

- Simultaneous analysis of 711 fb⁻¹ and 128 fb⁻¹ from BELLE and BELLE II
- > D parameters from BESIII using quantum-correlated $D^0 \overline{D}^0$
- Precision limited by data sample size

$$\gamma = (78.4 \pm 11.4 \pm 0.5 \pm 1.0)^{\circ}$$

JHEP 07 (2022) 099

> Expect $\sigma \gamma \sim 4^{\circ}$ with 10 ab⁻¹

V_{ub}/V_{cb} measurements

$$\begin{array}{c|c} \Lambda_b^0 \rightarrow p \mu^- \overline{\nu}_{\mu} & \text{Nature Physics 11 (2015) 743} \\ \hline \left| \frac{V_{ub}}{V_{cb}} \right| &= 0.083 \pm 0.004 \pm 0.004 \end{array}$$

$$B^0_s o K^- \mu^+
u_\mu$$
 PRL 126 (2021) 081804

 $\frac{|V_{ub}|}{|V_{cb}|} (low) = 0.061 \pm 0.004,$ $\frac{|V_{ub}|}{|V_{cb}|} (high) = 0.095 \pm 0.008$

BELLE II exclusive V_{ub}

□ Promising prospects at e^+e^- machines, to be accompanied by improved Lattice QCD calculation of FFs.

0	Observable	Belle	Belle II (5 ab-1)	Belle II (50 ab-1)	-0
	IV _{cb} l incl.	1.8%	1.2%	1.2%	
	IV _{cb} l excl.	$3.0_{ex} \pm 1.4_{th}\%$	1.8%	1.4%	
	V _{ub} incl.	$6.0_{ex} \pm 2.5_{th}\%$	3.4%	3.0%	
9	IV _{ub} l excl.	$2.5_{ex} \pm 3.0_{th}\%$	2.4%	1.2%	0

Semi-leptonic asymmetries a_{SL}^q

D Most precise results from LHCb Run 1, in tension with D0 same-sign $\mu\mu$ result

$$B_s^0 \to D_s^- \mu^+ \nu : a_{SL}^s = (0.39 \pm 0.26 \pm 0.20)\%$$

$$B^0 \to D^{(*)-} \mu^+ \nu : a^d_{SL} = (-0.02 \pm 0.19 \pm 0.30)\%$$

PRL 114 (2014) 041601

□ Looking forward to LHCb updates and BELLE II measurement of a_{SL}^d

Direct CPV in $B \rightarrow hh'h'$

arXiv:2206.07622

- Direct CPV in three-body decays originates from
- S and P wave interference
- > $KK \leftrightarrow \pi\pi$ rescattering
- Long distance interactions

 $A_{CP} = \frac{\Gamma(B^- - f) - \Gamma(B^+ \to \overline{f})}{\Gamma(B^- - f) + \Gamma(B^+ \to \overline{f})}$

- **Experimental correction**
- Production asymmetries
- Detection asymmetries

Localized CPV in $B \rightarrow hh'h'$

arXiv:2206.07622

Localized CPV in $B \rightarrow hh'h'$ arXiv:2206.07622

□ A_{CP} changes sign with m(hh')in KK $\leftrightarrow \pi\pi$ rescattering region

□ What is the origin of the large $A_{CP} = (74.5 \pm 2.7 \pm 1.8)\%$ in $m_{low}^2(\pi^+\pi^-) < 15 \text{ GeV}^2$ region, including charmonium $\chi_{c0}(1P)$?

Global CKM fits

When LHC started

Current picture

Flavour and CP violation in quark sector well described by CKM mechanism!

Rare decays & lepton flavour universality tests

Leptonic B decays

\Box $B_s^0 \rightarrow \mu\mu$ branching fraction consistent with SM

	$B(B_s^0 o \mu^+\mu^-)$	$B(B^0 o \mu^+ \mu^-)$
LHCb (11-18)	$(3.09^{+0.46}_{-0.43} {}^{+0.15}_{-0.11}) \times 10^{-9}$	$< 2.6 \times 10^{-10}$
CMS (11-16)	$(2.9 \pm 0.7 \pm 0.2) \times 10^{-9}$	$< 3.6 \times 10^{-10}$
ATLAS (11-16)	$(2.8^{+0.8}_{-0.7}) \times 10^{-9}$	$< 2.1 \times 10^{-10}$
SM	$(3.66 \pm 0.14) \times 10^{-9}$	$(1.03 \pm 0.05) \times 10^{-9}$

□ Searches for *B* decays to four muons

B(
$$B_s^0 \to \mu^+ \mu^- \mu^+ \mu^-$$
) < 8.6 × 10⁻¹⁰ at 90% CL
B($B^0 \to \mu^+ \mu^- \mu^+ \mu^-$) < 1.8 × 10⁻¹⁰ at 90% CL

□ LHCb upgrade II: 10% precision for $B(B^0 \to \mu\mu) / B(B^0_s \to \mu\mu)$, 2% for $\tau^{eff}(B^0_s \to \mu\mu)$ □ e^+e^- machines: search for $B^0 \to \nu\overline{\nu}$?

Searches for $B^+ \to K^+ \nu \overline{\nu}$

□ SM prediction

B(B⁺ → K⁺ $\nu\bar{\nu}$) = (4.7 ± 0.6) × 10⁻⁶ A. J. Buras et al., JHEP 02 (2015) 0684

Garch result with 63 fb^{-1}

PRL 127 (2021) 181802

 $B(B^+ \to K^+ \nu \bar{\nu}) < 4.1 \times 10^{-5} \text{ at } 90\% \text{ CL}$

$b \rightarrow s \mu^+ \mu^-$ decay rates

□ Branching fractions systematically below SM at low q^2

Caveat: significant hadronic uncertainties \Rightarrow look at more robust observables

Angular coefficients in $B \rightarrow K^* \mu^+ \mu^-$

 P'_5 values 2 – 3 σ from SM in $4 < q^2 < 8 \text{ GeV}^2$ region

 $B^+ \to K^{*+} \mu^+ \mu^-$ PRL 126 (2021) 091802

 P_2 values 3σ from SM in $4 < q^2 < 8 \text{ GeV}^2$ region

LFU tests in $b \rightarrow sl^+l^-$

 $R(X) = \mathbf{B}(B \to X\mu^+\mu^-)/\mathbf{B}(B \to Xe^+e^-)$

- \square R(X) is expected to be very close to unity in the SM
- □ Measurements of R(K), $R(K_S^0)$, $R(K^{*0})$, $R(K^{*+})$, R(pK) lower than SM values by $2 3\sigma$

Nature Physics 18 (2022) 277, JHEP 05 (2020) 040, JHEP 08 (2017) 055, PRL 128 (2022) 19

□ Higher precision and better understanding of systematics needed

$$B^0 \to K_S^0 l^+ l^-, B \to K^* l^+ l^-$$

LFU tests in $b \rightarrow c l^- v_l$

$$R(D^{(*)}) = \frac{B(\overline{B} \to D^{(*)}\tau^{-}\overline{\nu}_{\tau})}{B(\overline{B} \to D^{(*)}\mu^{-}\overline{\nu}_{\tau})}$$

- □ Previously only measure $R(D^*) = 0.336 \pm 0.27 \pm 0.030$
- □ Now simultaneously measure

$$\begin{split} R(D^*) &= 0.281 \pm 0.018 \pm 0.024 \\ R(D) &= 0.441 \pm 0.060 \pm 0.066 \\ \rho &= -0.43 \end{split}$$

$$\overline{B}{}^{0} \to D^{*+}\tau^{-}\overline{\nu}_{\tau} \qquad \overline{B}{}^{0} \to D^{*+}\mu^{-}\overline{\nu}_{\mu}$$

PRL 126 (2021) 091802

$R(D^{(*)})$ average

New LHCb result:

- 1.9σ agreement with SM
- Good agreement with other meas.

New preliminary average:

- Slighter higher R(D) and lower $R(D^*)$
- $3.2\sigma \rightarrow 3.3\sigma$ agreement with SM

Conclusions

Past decade: LHCb has significantly influenced the field of flavour physics

- > Remarkable improvements in precision of CKM parameters
- > Deep exploration of the B_s^0 system
- > Observation of a series of flavour anomalies
- Discoveries of many new hadron states
- Next decade: LHCb and BELLE II will be the major players in flavour physics and complement each other
 - LHCb will exploit the large pp cross section to further improve the measurement precision of CP violation and rare decays
 - BELLE II has unique strengths to study inclusive decays, decays to neutrinos or stable neutral particles
- **It is time to prepare for the further future: flavour physics at CEPC**

LHCb γ combination

• Contributions of different decay modes agree with each other

$B^{\pm} \rightarrow ho(770)^0 K^{\pm}$

arXiv:2206.02038

• For isolated vector resonances, $A_{CP} \propto$ square modulus of amplitude difference

$$|\mathcal{M}_{\pm}|^{2} = \underbrace{p_{0}^{\pm}}_{\bigvee} + \underbrace{p_{1}^{\pm}\cos\theta(m_{V}^{2},s_{\perp})}_{\bigvee} + \underbrace{p_{2}^{\pm}\cos^{2}\theta(m_{V}^{2},s_{\perp})}_{\bigvee}$$

 $\begin{array}{ll} & \textit{Direct scalar } A_{CP} & \textit{Scalar and Vector interf.} & \textit{Direct vector } A_{CP} \\ * \mbox{ model independent analysis of quasi two-body decays of } B^+ \rightarrow R(h_1^-h_2^+)h_3^+: \\ & s_{\parallel} = m^2(h_1^-h_2^+), \ s_{\perp} = m^2(h_1^-h_3^+) \end{array}$

 p_2^{\pm} obtained from a simple quadratic fit: $A_{CP}^V = \frac{|\mathcal{M}_-|^2 - |\mathcal{M}_+|^2}{|\mathcal{M}_-|^2 + |\mathcal{M}_+|^2} = \frac{p_2^- - p_2^+}{p_2^- + p_2^+}$

• A large *CP* asymmetry found in $B^{\pm} \rightarrow \rho (770)^{0} (\pi^{+}\pi^{-}) K^{\pm}$ decays $A_{CP} = (15.0 \pm 1.9_{\text{stat}} \pm 1.1_{\text{syst}} \pm 0.3_{J/\psi K})\%$ (6.8 σ)

No isolation of $\rho(770)^0$ contribution from the influence of $\omega(782)$ resonance

