B Decay Anomalies and Future Colliders

Wolfgang Altmannshofer waltmann@ucsc.edu

🗶 UC SANTA CRUZ

The 2022 International Workshop on the High Energy Circular Electron Positron Collider

Nanjing University and IHEP, October 24-28, 2022

New Physics in Rare B Decays

New Physics in Rare B Decays

Anomalies at low energies can establish a new scale in particle physics \Rightarrow "no-loose theorems", "guaranteed" discoveries at colliders, ...

(at least in principle)

Anomalies and Puzzles in 2022

Anomalies and Puzzles in 2022

Evidence for Lepton Flavor Universality Violation

$$R_{K^{(*)}} = rac{BR(B o K^{(*)} \mu \mu)}{BR(B o K^{(*)} ee)} \stackrel{ ext{SM}}{\simeq} 1$$

$$\mathsf{R}_{\mathcal{K}^+}^{[1,6]} = 0.846^{+0.042}_{-0.039}{}^{+0.013}_{-0.012} \; (3.1\sigma)$$

$$\begin{split} R^{[0.045,1.1]}_{\mathcal{K}^{\ast 0}} &= 0.66^{+0.11}_{-0.07} \pm 0.03 \; (\sim 2.5\sigma) \\ R^{[1.1,6]}_{\mathcal{K}^{\ast 0}} &= 0.69^{+0.11}_{-0.07} \pm 0.05 \; (\sim 2.5\sigma) \\ R^{[1.1,6]}_{\mathcal{K}_S} &= 0.66^{+0.20}_{-0.14}_{-0.04} \; (\sim 1.5\sigma) \\ R^{[0.045,6]}_{\mathcal{K}^{\ast +}} &= 0.70^{+0.18}_{-0.13}_{-0.04} \; (\sim 1.5\sigma) \\ R^{[0.1,6]}_{\mathcal{\rho}\mathcal{K}} &= 0.86^{+0.14}_{-0.11} \pm 0.05 \; (\sim 1\sigma) \end{split}$$

LHCb 2103.11769, LHCb 1705.05802, 1912.08139, 2110.09501; also Belle 1904.02440, 1908.01848

Bottom-Up Approach to the Anomalies

(inspired by Marco Nardecchia)

Model Independent Studies

Model Independent Analysis

$$\mathcal{H}_{\text{eff}}^{b \to s} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right)$$

neglecting tensor operators and additional scalar operators (they are dimension 8 in SMEFT: Alonso, Grinstein, Martin Camalich 1407.7044)

Wolfgang Altmannshofer (UCSC)

B Decay Anomalies and Future Colliders

Global Fits of Rare $b \rightarrow s\ell\ell$ Decays

 $C_{9}^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\mu)$ $C_{10}^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\gamma_{5}\mu)$

LFU ratios

WA, Stangl 2103.13370 (other recent fits: Geng et al. 2103.12738; Cornella et al. 2103.16558; Alguero et al. 2104.08921; Hurth et al. 2104.10058; Gubernari et al. 2206.03797)

Wolfgang Altmannshofer (UCSC)

Global Fits of Rare $b \rightarrow s\ell\ell$ Decays

WA, Stangl 2103.13370 (other recent fits: Geng et al. 2103.12738; Cornella et al. 2103.16558; Alguero et al. 2104.08921; Hurth et al. 2104.10058; Gubernari et al. 2206.03797)

 $C_{9}^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\mu)$ $C_{10}^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\gamma_{5}\mu)$

LFU ratios

- $B_s \rightarrow \mu^+ \mu^-$ branching ratio (with latest CMS update probably compatible with SM-like C_{10})
- $b \rightarrow s \mu \mu$ observables

overall remarkable consistency

(if one is only interested in the LFU ratios, one can also put the NP into operators with electrons)

Wolfgang Altmannshofer (UCSC)

The New Physics Scale

unitarity bound
$$\frac{4\pi}{\Lambda_{NP}^2}(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$$
 $\Lambda_{NP} \simeq 120 \text{ TeV} \times (C_9^{NP})^{-1/2}$ generic tree $\frac{1}{\Lambda_{NP}^2}(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 35 \text{ TeV} \times (C_9^{NP})^{-1/2}$ MFV tree $\frac{1}{\Lambda_{NP}^2} V_{tb}V_{ts}^*(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 7 \text{ TeV} \times (C_9^{NP})^{-1/2}$ generic loop $\frac{1}{\Lambda_{NP}^2} \frac{1}{16\pi^2}(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 3 \text{ TeV} \times (C_9^{NP})^{-1/2}$ MFV loop $\frac{1}{\Lambda_{NP}^2} \frac{1}{16\pi^2} V_{tb}V_{ts}^*(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 0.6 \text{ TeV} \times (C_9^{NP})^{-1/2}$

(MFV = Minimal Flavor Violation)

Model Independent Approach at the LHC

Even if the new physics is not accessible directly at the LHC, high energy tails of di-lepton spectra are in principle still affected

(Greljo, Marzocca 1704.09015)

$$R = rac{\sigma(pp o \mu\mu)}{\sigma(pp o ee)}$$

 $C_{9}^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\mu) \qquad C_{10}^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\gamma_{5}\mu)$

- flavor changing operators are probed up to scales of few TeV
- order of magnitude is missing to probe the $b \rightarrow s\ell\ell$ anomalies
- ightarrow would need a 100 TeV collider

Non-Standard $\mu^+\mu^- \rightarrow bs$ at a Muon Collider

$$\frac{d\sigma(\mu^+\mu^- \to b\bar{s})}{d\cos\theta} = \frac{3}{16}\sigma(\mu^+\mu^- \to bs)\Big(1 + \cos^2\theta + \frac{8}{3}A_{\text{FB}}\cos\theta\Big)$$
$$\frac{d\sigma(\mu^+\mu^- \to \bar{b}s)}{d\cos\theta} = \frac{3}{16}\sigma(\mu^+\mu^- \to bs)\Big(1 + \cos^2\theta - \frac{8}{3}A_{\text{FB}}\cos\theta\Big)$$

Total cross section increases with the center of mass energy

$$\sigma(\mu^+\mu^- \to bs) = \frac{G_F^2 \alpha^2}{8\pi^3} |V_{tb}V_{ts}^*|^2 \ s \left(|C_9|^2 + |C_{10}|^2\right)$$

Non-Standard $\mu^+\mu^- \rightarrow bs$ at a Muon Collider

$$\frac{d\sigma(\mu^+\mu^- \to b\bar{s})}{d\cos\theta} = \frac{3}{16}\sigma(\mu^+\mu^- \to bs)\Big(1 + \cos^2\theta + \frac{8}{3}A_{\text{FB}}\cos\theta\Big)$$
$$\frac{d\sigma(\mu^+\mu^- \to \bar{b}s)}{d\cos\theta} = \frac{3}{16}\sigma(\mu^+\mu^- \to bs)\Big(1 + \cos^2\theta - \frac{8}{3}A_{\text{FB}}\cos\theta\Big)$$

Total cross section increases with the center of mass energy

$$\sigma(\mu^+\mu^- \to bs) = \frac{G_F^2 \alpha^2}{8\pi^3} |V_{tb}V_{ts}^*|^2 \ s \left(|C_9|^2 + |C_{10}|^2\right)$$

Forward backward asymmetry is sensitive to the chirality strcuture

$$m{A}_{ ext{FB}} = rac{-3 ext{Re}(C_9C_{10}^*)}{2(|C_9|^2+|C_{10}|^2)}$$

Need charge tagging to measure the forward backward asymmetry

Wolfgang Altmannshofer (UCSC)

WA, Gadam, Profumo 2203.07495 and in preparation

backgrounds fall with c.o.m. energy; new physics signal increases
S/B ~ 1 for a c.o.m. energy of ~ 10 TeV.

Sensitivity Projections

WA, Gadam, Profumo 2203.07495 and in preparation

- branching ratio (green) and forward backward asymmetry (blue) are highly complementary
- 10 TeV muon collider has better sensitivity than the current and projected rare B decay results (dashed)

(see also Huang et al. 2103.01617; Asadi et al. 2104.05720

Azatov et al. 2205.13552 for related studies)

Wolfgang Altmannshofer (UCSC)

B Decay Anomalies and Future Colliders

(Simplified) Models

Simplified Models for R_K and R_{K^*}

possible tree level explanations:

- ► Z' Bosons
- Lepto-Quarks

upper bounds on flavor violating couplings from B_s mixing imply upper bounds on the particle masses (e.g. Di Luzio et al. 1909.11087)

$$\blacktriangleright$$
 $m_{Z'} \lesssim g_{\mu} imes 5 {
m TeV}$

• $m_{LQ} \lesssim (30 - 60)$ TeV (depending on the lepto-quark representation)

 \rightarrow a weakly coupled Z' might be in reach of the LHC

My Favorite Z' Model

Z' based on gauged $L_{\mu}-L_{\tau}$ (He, Joshi, Lew, Volkas PRD 43, 22-24) with effective flavor violating couplings to quarks

WA, Gori, Pospelov, Yavin 1403.1269; WA, Yavin 1508.07009

Q: heavy vectorlike fermions with mass $\sim 1 - 10$ TeV ϕ : scalar that breaks $L_{\mu} - L_{\tau}$

My Favorite Z' Model

Z' based on gauged $L_{\mu}-L_{\tau}$ (He, Joshi, Lew, Volkas PRD 43, 22-24) with effective flavor violating couplings to quarks

WA, Gori, Pospelov, Yavin 1403.1269; WA, Yavin 1508.07009

predicted Lepton Universality Violation!

Q: heavy vectorlike fermions with mass $\sim 1 - 10$ TeV ϕ : scalar that breaks $L_{\mu} - L_{\tau}$

Probing the $L_{\mu} - L_{\tau}$ Parameter Space

WA, Gori, Martin-Albo, Sousa, Wallbank 1902.06765

$L_{\mu} - L_{\tau}$ and Lepton Flavor Universality

the Z' model based on gauged $L_{\mu} - L_{\tau}$ predicts:

opposite effects in the μ⁺μ⁻ and τ⁺τ⁻ final state
 no effect in the e⁺e⁻ final state

- Rare b decays with taus in the final state are very weakly constrained at the moment.
- Expected sensitivities at LHCb and Belle II still far from the SM predictions.

$$\begin{split} &\mathsf{BR}(B_s\to\tau\tau)_{\mathsf{SM}} = (7.7\pm0.5)\times10^{-7} & \text{(Bobeth et al. 1311.0903)} \\ &\mathsf{BR}(B\to K\tau\tau)_{\mathsf{SM}} = (1.2\pm0.1)\times10^{-7} & \text{(Du et al. 1510.02349)} \end{split}$$

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$Br(B^+ \to K^+ \tau^+ \tau^-) \cdot 10^5$	< 32	< 6.5	< 2.0
${\rm Br}(B^0\to\tau^+\tau^-)\cdot 10^5$	< 140	< 30	< 9.6
$\operatorname{Br}(B^0_s \to \tau^+ \tau^-) \cdot 10^4$	< 70	< 8.1	_

(Belle II Physics Book 1808.10567)

$B \rightarrow K^* \tau \tau$ at the Z Pole

- ► Z vertex from primary tracks
- B vertex from $K\pi$
- tau vertices from 3 prong tau decays
- ⇒ decay can be fully reconstructed

(Kamenik, Monteil, Semkiv, Silva 1705.11106)

► with $3 \times 10^{12} Z$ bosons can expect up to O(100) reconstructed $B \rightarrow K^* \tau \tau$ events

Important to control backgrounds from D mesons faking taus (Li, Liu 2012.00665)

More Predictions Based on $L_{\mu} - L_{\tau}$

- (a) Lepton Yukawas and Z' couplings are aligned due to $L_{\mu} L_{\tau}$
 - \Rightarrow no lepton flavor violating couplings of the Z'
 - ⇒ negligible rates of $B_s \rightarrow \tau \mu$, $B \rightarrow K^{(*)} \tau \mu$, etc (in contrast to many other models)

More Predictions Based on $L_{\mu} - L_{\tau}$

- (a) Lepton Yukawas and Z' couplings are aligned due to $L_{\mu}-L_{ au}$
 - \Rightarrow no lepton flavor violating couplings of the Z'
 - ⇒ negligible rates of $B_s \rightarrow \tau \mu$, $B \rightarrow K^{(*)} \tau \mu$, etc (in contrast to many other models)
- (b) Purely vectorial coupling to muons
 - ⇒ no new physics effect in $B_s \rightarrow \mu^+ \mu^-$ (in contrast to many other models)

More Predictions Based on $L_{\mu} - L_{\tau}$

- (a) Lepton Yukawas and Z' couplings are aligned due to $L_{\mu}-L_{ au}$
 - \Rightarrow no lepton flavor violating couplings of the Z'
 - ⇒ negligible rates of $B_s \rightarrow \tau \mu$, $B \rightarrow K^{(*)} \tau \mu$, etc (in contrast to many other models)
- (b) Purely vectorial coupling to muons \Rightarrow no new physics effect in $B_s \rightarrow \mu^+ \mu^-$ (in contrast to many other models)
- (c) $B \to K^{(*)}\nu_{\mu}\bar{\nu}_{\mu}$ suppressed, $B \to K^{(*)}\nu_{\tau}\bar{\nu}_{\tau}$ enhanced, $B \to K^{(*)}\nu_{e}\bar{\nu}_{e}$ unaffected neutrino flavor cannot be measured in experiment $\Rightarrow B \to K^{(*)}\nu\bar{\nu}$ is SM-like to a very good approximation (in contrast to many other models)

Lepton Universality in Z Decays

- ► Most models that address the anomalies in R_{K^(*)} (and R_{D^(*)}) predict lepton flavor universality violation in Z decays
- Lepton universality in Z decays established at LEP at permille level (hep-ex/0509008)

$$\frac{\mathsf{BR}(Z \to \mu\mu)}{\mathsf{BR}(Z \to ee)} = 1.0009 \pm 0.0028$$
$$\frac{\mathsf{BR}(Z \to \tau\tau)}{\mathsf{BR}(Z \to ee)} = 1.0019 \pm 0.0032$$

Systematic uncertainties are non-negligible.

Measurements already constrain many models that are motivated by the hints of LFU violation in B decays.

e.g. Feruglio, Paradisi, Pattori 1606.00524, ...

\rightarrow Improved results would be very important!

Expected Sensitivities at Future Z Factories

- With $3 \times 10^{12} Z$ bosons, statistics is not an issue.
- Key is the control of systematic uncertainties ($e/\mu/\tau$ efficiencies).
- ► relative BR measurements with 10⁻⁴ could probe essentially all parameter space of many models that explain R_K, R_{K*}, R_D, R_{D*}.

(WA, unpublished)

Summary

would have a transformative impact:

motivate a large new physics model building effort and provide targets for searches at the LHC and future colliders

- ▶ Implications of $R_{K^{(*)}}$ for CEPC:
- ightarrow look for enhancements of b
 ightarrow s au au decays
- \rightarrow look for LFUV in Z decays at the 10⁻⁴ level

Back Up

A Muon Collider?

Muon collider design is driven by finite muon lifetime

talk by D. Schulte @ Muon Collider Agora, Feb 16 2022

A Muon Collider!

talk by D. Schulte @ Muon Collider Agora, Feb 16 2022

$b ightarrow s \mu \mu$ Branching Ratios

The P'_5 Anomaly

 $P_5^\prime \sim$ a moment of the $B
ightarrow K^* \mu^+ \mu^-$ angular distribution

Anomaly persists in the latest update of $B^0 \rightarrow K^{*0}\mu^+\mu^-$ with 2016 data. (Anomaly also seen in $B^{\pm} \rightarrow K^{*\pm}\mu^+\mu^-$ LHCb 2012.13241)