D_s^* weak decays and the experiment potential

Shan Cheng

Hunan University

arXiv:2203.06797, in collaboration with Y.H Ju, Q. Qin and F.S Yu

October 25, 2022

Shan Cheng (HNU) CEPC2022 October 25, 2022 1 / 27

Overview

- Motivation
 - The desirability
 - The significances
- 2 $D_s^* \to \phi$ helicity form factors
 - OPE evaluation
 - hadron interpolation
 - duality
 - result
- 3 Exclusive D_s^* weak decays
- 4 Conclusion

- α_s : α : $G_F \sim \mathcal{O}(1)$: $\mathcal{O}(\frac{1}{137})$: $\mathcal{O}(10^{-5})$
- very hard to measure weak decay from strong and e.m interactions

(4日) (個) (注) (注) (注) (200)

- $\alpha_s : \alpha : G_F \sim \mathcal{O}(1) : \mathcal{O}(\frac{1}{137}) : \mathcal{O}(10^{-5})$
- very hard to measure weak decay from strong and e.m interactions
- so the total widths of heavy-light vector mesons are still in lack

*
$$\Gamma_{D^{*+}} = 84.3 \pm 1.8 \,\mathrm{keV}$$
 $\rightarrow D^{0}\pi^{+}, D^{+}\pi^{0}, D^{+}\gamma$

$$\begin{array}{lll} \star & \Gamma_{D^{*0}} < 2.1 \, \mathrm{MeV} & \Gamma_{D_s^{*+}} < 1.9 \, \mathrm{MeV} \\ & \to D^0 \pi^0, D^0 \gamma & \to D_s^+ \gamma, D_s^+ \pi^0, D_s^+ e^+ e^- \end{array} \hspace{-0.5cm} \text{[PDG 2022]}$$

 $\star \Gamma_{B^*}, \Gamma_{B_s^*}$ no measurement

Shan Cheng (HNU)

 but they are very important properties, structures, g_{D_s}, non-perturbative approaches [Li 2020]

					_
		$g_{D^{*+}D^{+}\gamma}$ (GeV ⁻¹)	$g_{D^{*0}D^0\gamma} \ (\mathrm{GeV}^{-1})$	$g_{D_s^{*+}D_s^+\gamma}$ (GeV ⁻¹)	
LCSRs, partia	NLtos work	$-0.15^{+0.11}_{-0.10}$	$1.48^{+0.29}_{-0.27}$	$-0.079^{+0.086}_{-0.078}$	
	$\mathrm{HH}\chi\mathrm{PT}$ [24]	-0.27 ± 0.05	2.19 ± 0.11	0.041 ± 0.056	
	HQET+VMD [35]	$-0.29^{+0.19}_{-0.11}$	$1.60^{+0.35}_{-0.45}$	$-0.19^{+0.19}_{-0.08}$	
	HQET+CQM [71]	$-0.38^{+0.05}_{-0.06}$	1.91 ± 0.09	_	
	Lattice QCD [32]	-0.2 ± 0.3	2.0 ± 0.6	_	
	LCSR [21]	-0.50 ± 0.12	1.52 ± 0.25	_	
	QCDSR [20]	$-0.19^{+0.03}_{-0.02}$	0.62 ± 0.03	-0.20 ± 0.03	
	RQM [72]	-0.44 ± 0.06	2.15 ± 0.11	-0.19 ± 0.03	
	experiment [16–18]	-0.47 ± 0.06	1.77 ± 0.03	_	

- LCSRs, complete NLO corrections, $g_{D_s^*D_s\gamma}=0.60^{+0.19}_{-0.18}$, [Pullin 2021]
- very sensitive to different contributions (radiative corrections, power corrections), a benchmark to probe the involved dynamics

- $\alpha_s : \alpha : G_F \sim \mathcal{O}(1) : \mathcal{O}(\frac{1}{137}) : \mathcal{O}(10^{-5})$
- very hard to measure weak decay from strong and e.m interactions
- so the total widths of heavy-light vector mesons are still in lack

*
$$\Gamma_{D^{*+}} = 84.3 \pm 1.8 \,\mathrm{keV}$$
 $\rightarrow D^{0}\pi^{+}, D^{+}\pi^{0}, D^{+}\gamma$

$$\begin{array}{lll} \star & \Gamma_{D^{*0}} < 2.1 \, \mathrm{MeV} & \Gamma_{D_s^{*+}} < 1.9 \, \mathrm{MeV} & \text{[pdg 2022]} \\ & \to D^0 \pi^0, D^0 \gamma & \to D_s^+ \gamma, D_s^+ \pi^0, D_s^+ e^+ e^- \end{array}$$

- \star $\Gamma_{B^*}, \Gamma_{B^*_s}$ no measurement
- but they are very important properties, structures, g_{D_s*D_sγ}, non-perturbative approaches, et.al.,
- impressive lattice QCD evaluation

$$\Gamma_{D_s^{*+}} = 0.070(28) \,\mathrm{keV}$$
 [HPQCD 2013]

the longest-lived charged vector meson

ullet encourage us to study the exclusive D_s^* weak decay

Shan Cheng (HNU) CEPC2022 October 25, 2022 6 / 27

 \dagger leptonic decays, helicity enhanced $D_s^* o l
u$, decay constant

$$\Gamma_{D_{S}^* \to l \nu} = \frac{G_F^2}{12\pi} |V_{cs}|^2 f_{D_{S}^*}^2 m_{D_{S}^*}^3 \left(1 - \frac{m_l^2}{m_{D_{S}^2*}^2}\right) \left(1 + \frac{m_l^2}{m_{D_{S}^*}^2}\right) = 2.44 \times 10^{-12} \, \mathrm{GeV} \,.$$

- † semileptonic decays, $D_s^* o \phi l \nu$, $|V_{cs}|$ and helicity form factors
 - the least precisely determinations of CKM unitarity

$$|V_{us}|^2 + |V_{cs}|^2 + |V_{ts}|^2 = 1.026 \pm 0.022$$
, $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1.025 \pm 0.022$
 $|V_{cs}| = 0.987 \pm 0.011$,

 D_s^* weak decay are highly anticipated to reduce the uncertainty.

- heavy quark symmetry (HQS) has been examined in $\bar{B} \to D^*(D) l \bar{\nu}$, can also be tested in $D_s^*(D_s) \to \phi l^+ \nu$
- lepton flavour university (LFU) in vector charm sector
- † hadronic decays, $D_s^* o \phi \rho, \phi \pi$, factorisation theorem or topological analysis
- inclusive decays, $D_s^* o X_s l \nu$, HQET and reliability of power expansion

Shan Cheng (HNU) CEPC2022 October 25, 2022 7 / 27

$D_{\epsilon}^* \to \phi$ helicity form factors

- heavy-to-light form factors (FFs) play the key role in weak decays
- both pert. and nonpert. physics enter into the game
- the measurement would reveal the inner structures of hadrons
- QCD-based approaches to calculate FFs, LCSRs, PQCD, LQCD, et al.
- implement of LCSRs in charm sector, $D \to \pi, K, \eta^{(\prime)}, \phi$ et.al [Khodjamirian 2000, Ball 2006, Offen 2013, Du 2003, Wu 2006]

8 / 27

Shan Cheng (HNU) CEPC2022

$D_s^* \to \phi$ helicity form factors

- heavy-to-light form factors (FFs) play the key role in weak decays
- both pert. and nonpert. physics enter into the game
- the measurement would reveal the inner structures of hadrons
- QCD-based approaches to calculate FFs, LCSRs, PQCD, LQCD, et al.
- implement of LCSRs in charm sector, $D \to \pi, K, \eta^{(\prime)}, \phi$ et.al [Khodjamirian 2000, Ball 2006, Offen 2013, Du 2003, Wu 2006]
- $D_s^* \to \phi$ FFs in this work
 - \dagger first LCSRs prediction of V o V' type FFs
 - \dagger helicity decomposition with seven FFs, saying ${\bf 00}, {\bf 0\pm}, \pm {\bf 0}, \pm \mp$
 - \dagger LCSRs prediction is reliable in large recoiled region [0, 0.4] ${
 m GeV}^2$
 - \dagger parameterisations to the full kinematical region $[0,1.2]\,\mathrm{GeV}^2$
- ullet experiment potential of D_s^* weak decays

<ロ > ← □ > ← □ > ← □ > ← □ = ・ の へ ○ ·

$D_s^* \to \phi$ helicity form factors

start with the correlation function

$$F_{\mu a}(p_1,q) = i \int d^4x \, \mathrm{e}^{iq\cdot x} \left\langle \phi(p_2,\epsilon_2^*) \middle| T\{J_\mu^W(x),J_a^V(0)\}\middle| 0 \right\rangle,$$

- ullet heavy-light weak current $J^W_\mu=ar s\gamma_\mu(1-\gamma_5)c$ and vector current $J^V_a=ar c\gamma_a s$
- ullet modify the correlation function by multiplying $ar\epsilon^\mu$ to obtain the helicity correlator

$$ar{\epsilon}^{\mu}F_{\mu a}(p_{1},q) = \sum_{i,j=0,\pm} \epsilon_{1a,i'}^{*}F_{ij}(q^{2},p_{1}^{2})\,, \quad i'=i+j$$

i,j,i'=i+j denote the polarizations of the J^W_μ , ϕ meson and the J^V_a , respectively.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

10 / 27

Shan Cheng (HNU) CEPC2022 October 25, 2022

$D_s^* \to \phi$ helicity form factors

start with the correlation function

$$F_{\mu a}(p_1, q) = i \int d^4 x \, e^{iq \cdot x} \, \langle \phi(p_2, \epsilon_2^*) \big| \, T\{J_{\mu}^W(x), J_{a}^V(0)\} \big| 0 \rangle \,, \tag{1}$$

- ullet heavy-light weak current $J^W_\mu=ar s\gamma_\mu(1-\gamma_5)c$ and vector current $J^V_a=ar c\gamma_a s$
- ullet modify the correlation function by multiplying $ar{\epsilon}^\mu$ to obtain the helicity correlator

$$\bar{\epsilon}^{\mu} F_{\mu a}(p_1, q) = \sum_{i,j=0,\pm} \epsilon_{1a,i'}^* F_{ij}(q^2, p_1^2), \quad i' = i + j$$
(2)

i,j,i'=i+j denote the polarizations of the J^W_μ , ϕ meson and the J^V_a , respectively.

- twofold ways to consider the correlation function
 - † at quark-gluon level by OPE, $\sim \sum_i H_i(u,\mu) \otimes \phi_i(u)$
 - † at hadron level, sum over intermediate states
 - \dagger QCD asymptotic behaviour, quark-hadron duality to equal, s_0
 - \dagger to improve the accuracy of duality, Borel transformation, M^2

Shan Cheng (HNU) CEPC2022 October 25, 2022 11 / 27

$D_s^* o \phi$ helicity form factors OPE calculation

- ullet OPE is valid for the large energies of the final state meson $E_\phi\gg \Lambda_{QCD}$,
 - $0 \leqslant |q^2| \leqslant m_{D_s^*}^2 2m_{D_s^*} E_\phi \equiv q_{\mathrm{LCSR,max}}^2, \iff q \cdot x \sim 0, x^2 \sim 0$
- $|q^2| \in [0, q_{\rm LCSR, max}^2] \sim m_c^2 2m_c \chi$ with a typical hadron scale $\chi \sim 500 \, {\rm MeV}$, the lower part of $0 < |q^2| < (m_{D_c^*}^2 m_\phi)^2 \equiv q_0^2 \approx 1.2 \, {\rm GeV}^2$
- $\dagger \ |q^2| o \mathcal{O}(m_c^2)$, the virtuality of c-quark decreases to a soft scale, OPE fails
- $|q^2|, |(p_2+q)^2| \ll m_c^2$, the intermediate c-quark filed has large virtuality,

LO,
$$S(x,0) = -i\langle 0|T\{c(x),\bar{c}(0)\}|0\rangle = \int \frac{d^4p}{(2\pi)^4} e^{-ip \cdot x} \frac{/p + m_c}{p^2 - m_c^2}$$
(3)

NLO, $\mathcal{O}(\alpha_s)$ correction with gluon interactions · · ·

• only ϕ meson is on shell, $p_2^2=m_\phi^2$, dispersion intergral in $(p_2+q)^2$

$$\bar{\epsilon}^{\mu} F_{\mu a}(q, p_1) = \epsilon_{1a, i'}^* \sum_{i,j} F_{ij}^{\text{OPE}}(q^2, (p_2 + q)^2)$$
(4)

$$F_{ij}^{\text{OPE}}(q^2, (p_2 + q)^2) = \sum_{j} \int_0^1 du T^{(n)}(u, q^2, p_1^2) \phi^{(n)}(u)$$

$$= \frac{1}{\pi} \int_0^1 du \sum_{n} \frac{\text{Im} F_{n,ij}^{\text{OPE}}(q^2, u)}{[-u(p_2 + q)^2 - \bar{u}q^2 + u\bar{u}m_{rb}^2 + m_c^2]^n}. \tag{4}$$

Shan Cheng (HNU) CEPC2022 October 25, 2022 12 / 27

• the hadron dispersion relation in $p_1^2 > 0$

$$F_{ij}(q^2, \rho_1^2) = \frac{1}{\pi} \int_{m_c^2}^{\infty} ds \, \frac{\operatorname{Im} F_{ij}(q^2, s)}{s - \rho_1^2} = \frac{\rho_{ij}^0}{m_{D_*^*}^2 - \rho_1^2} + \int_{s_0}^{\infty} ds \, \frac{\rho_{ij}^{\prime h}(q^2, s)}{s - \rho_1^2}$$
 (5)

$$\epsilon_{1a,j'}^* \rho_{ij}^0(q^2) = \bar{\epsilon}_i^\mu \langle \phi(p_2, \epsilon_2^*) | J_\mu^W(x) | D_s^*(\epsilon_1, p_1) \rangle \langle D_s^*(\epsilon_1^*, p_1) | J_a^V(0) | 0 \rangle$$
 (6)

matrix elements and the helicity form factors

$$\bar{\epsilon}_{i}^{\mu}\langle\phi(p_{2},\epsilon_{2}^{*})\big|\bar{s}J_{\mu,j}^{W}c\big|D_{s}^{*}(\epsilon_{1},p_{1})\rangle\equiv\textit{H}_{ij}(\textit{q}^{2})\,,\quad\langle D_{s}^{*+}(p_{1},\epsilon_{1}^{*})\big|\bar{s}\gamma_{a}c\big|0\rangle=\epsilon_{1a}^{*}\textit{m}_{D_{s}^{*}}\textit{f}_{D_{s}^{*}}^{*}\,,$$

isolate the ground state contribution

$$F_{ij}(q^2, p_1^2) = \frac{m_{D_s^*} f_{D_s^*} H_{ij}(q^2)}{m_{D_s^*}^2 - p_1^2} + \int_{s_0}^{\infty} ds \, \frac{\rho_{ij}^{\prime h}(q^2, s)}{s - p_1^2}. \tag{7}$$

13 / 27

Shan Cheng (HNU) CEPC2022 October 25, 2022

$D_s^* \to \phi$ helicity form factors duality

- the same correlator in OPE calculation Eq.(4) and hadron interpolation Eq.(7)
- ullet QCD property, like $F_\pi(q^2)$ and $G_\pi(s)$ have the similar asymptotic behaviour
- ullet semi-local duality $s\equiv s(q^2,u)=ar{u}m_\phi^2+(m_c^2-ar{u}q^2)/u$

$$\frac{1}{\pi} \int_{s_0}^{\infty} ds \, \frac{u^2(s)}{[u^2(s)m_{\phi}^2 - q^2 + m_c^2]} \, \sum_n \frac{\text{Im} F_{n,ij}^{\text{OPE}}(q^2,s)}{u^n(s)[s - (p_2 + q)^2]^n} \bigg|_{q^2,(p_2 + q)^2 < 0} = \int_{s_0}^{\infty} ds \, \frac{\rho_{ij}'^h(q^2,s)}{s - \rho_1^2}$$

Shan Cheng (HNU) CEPC2022 October 25, 2022 14 / 27

$D_s^* \to \phi$ helicity form factors duality

- the same correlator in OPE calculation Eq.(4) and hadron interpolation Eq.(7)
- ullet QCD property, like $F_\pi(q^2)$ and $G_\pi(s)$ have the similar asymptotic behaviour
- ullet semi-local duality $s\equiv s(q^2,u)=ar{u}m_\phi^2+(m_c^2-ar{u}q^2)/u$

$$\frac{1}{\pi} \int_{\mathbf{s_0}}^{\infty} ds \, \frac{u^2(s)}{[u^2(s) m_{\phi}^2 - q^2 + m_{c}^2]} \, \sum_{n} \frac{\mathrm{Im} F_{n,ij}^{\mathrm{OPE}}(q^2,s)}{u^n(s)[s - (\rho_2 + q)^2]^n} \bigg|_{q^2,(\rho_2 + q)^2 < 0} = \int_{\mathbf{s_0}}^{\infty} ds \, \frac{\rho_{ij}'^h(q^2,s)}{s - \rho_1^2}$$

† Borel trans. to suppress the pollution introduced by duality

$$\hat{B}\left[\int_{u_0}^1 du \frac{F(u)}{\triangle}\right] \quad = \quad \int_{u_0}^1 du \frac{F(u)}{u} e^{-s(u)/M^2} \; , \cdots$$

- $\label{eq:multiple_problem} \dagger \ \mu_f^2 = m_{D_{\tilde{s}}^*}^2 m_c^2 = 1.66^2 \, \mathrm{GeV^2}, \quad \mu_f^2 < M^2 \sim \mathcal{O}(u m_{D_{\tilde{s}}^*}^2 + \bar{u} Q^2 u \bar{u} m_\phi^2) < s_0, \quad s_0 \approx (m_{D_{\tilde{s}}^*} + \chi)^2$
- † compromise between the overwhelming ground state and the convergent OPE,

$$\frac{d}{d(1/M^2)}\ln H_{ij}(q^2)=0.$$

$D_s^* \to \phi$ helicity form factors duality

- the same correlator in OPE calculation Eq.(4) and hadron interpolation Eq.(7)
- ullet QCD property, like $F_\pi(q^2)$ and $G_\pi(s)$ have the similar asymptotic behaviour
- ullet semi-local duality $s\equiv s(q^2,u)=ar{u}m_\phi^2+(m_c^2-ar{u}q^2)/u$

$$\frac{1}{\pi} \int_{s_0}^{\infty} ds \, \frac{u^2(s)}{[u^2(s)m_{\phi}^2 - q^2 + m_c^2]} \, \sum_n \frac{\epsilon_{1s}^* \, \text{Im} F_n^{\text{OPE},(i)}(q^2, s)}{u^n(s)[s - (p_2 + q)^2]^n} \Big|_{q^2, (p_2 + q)^2 < 0} = \int_{s_0}^{\infty} ds \, \frac{\rho^{h,(i)}(q^2, s)}{s - p_1^2}$$
(8)

† Borel trans. to suppress the pollution introduced by duality

$$\hat{B}\left[\int_{u_0}^1 du \frac{F(u)}{\triangle}\right] = \int_{u_0}^1 du \frac{F(u)}{u} e^{-s(u)/M^2}, \dots$$
 (9)

$$\label{eq:model} \dagger \ \mu_f^2 = m_{D_s^*}^2 - m_c^2 = 1.66^2 \, \mathrm{GeV}^2, \quad \mu_f^2 < M^2 \\ \sim \mathcal{O}(u m_{D_s^*}^2 + \bar{u} Q^2 - u \bar{u} m_\phi^2) < \mathbf{s_0}, \quad \mathbf{s_0} \\ \approx (m_{D_s^*} + \chi)^2$$

 \dagger compromise between the overwhelming ground state and the convergent OPE,

$$\frac{d}{d(1/M^2)}\ln H_{ij}(q^2) = 0. {(10)}$$

- ullet $s_0 = 6.8 \pm 1.0 \, {
 m GeV}^2$, $M^2 = 4.50 \pm 1.0 \, {
 m GeV}^2$ and $g^2_{
 m LCSR,max} = 0.4 \, {
 m GeV}^2$
- the sum rule with leading power approximation

$$\frac{1}{\pi} \int_{u_0}^1 du \, \frac{\text{Im} F_{1,ij}^{\text{OPE}}(q^2 < 0, u)}{u} \, e^{-s(u)/M^2} = m_{D_s^*} f_{D_s^*} \frac{H_{ij}(q^2 > 0)}{u} e^{-m_{D_s^*}^2/M^2} \tag{11}$$

Shan Cheng (HNU) CEPC2022 October 25, 2022 16 / 27

• $\bar{m}_c(m_c) = 1.30 \, \mathrm{GeV}$, $m_{D_c^*} = 2.112 \, \mathrm{GeV}$ and $f_{D_c^*} = 0.274 \, \mathrm{GeV}$

• The (modified) helicity form factors at the full recoiled point $q^2 = 0$ are

$$\begin{split} &\mathcal{H}_{00}(0) = 1.99^{+0.15+0.32}_{-0.17-0.30}\,, \\ &\mathcal{H}_{0+}(0) = 2.86^{+0.21+0.48}_{-0.35-0.48}\,, \quad \mathcal{H}_{0-}(0) = 0.19^{+0.05+0.09}_{-0.09-0.07}\,, \\ &\mathcal{H}_{+0}(0) = 2.67^{+0.47+0.31}_{-0.26-0.29}\,, \quad \mathcal{H}_{-0}(0) = -2.92^{-0.53-0.35}_{+0.33+0.32}\,, \\ &\mathcal{H}_{+-}(0) = 2.11^{+0.17+0.40}_{-0.27-0.28}\,, \quad \mathcal{H}_{-+}(0) = -0.19^{-0.06-0.01}_{+0.11+0.03}\,, \end{split}$$

• the center values of several orthogonal Lorentz form factors as

$$\begin{split} \mathcal{V}_1(0) - \mathcal{V}_2(0) &= -1.86 \,, \quad \mathcal{V}_5(0) = 2.46 \,, \\ \mathcal{A}_1(0) + \mathcal{A}_2(0) &= -1.63 \,, \quad \mathcal{V}_6(0) = -0.26 \,. \end{split}$$

- compared with the result obtained from light-front quark model [Chang 2019]
- in fact they show a good consistence after considering the different definitions

Shan Cheng (HNU) CEPC2022 October 25, 2022

18 / 27

- ullet form factors with small recoiling, $q^2 \in [q^2_{\mathrm{LCSR,max}}, q^2_0] \sim [0.4, 1.2] \, \mathrm{GeV}^2$
- consider two parameterisations $q_0^2 \equiv (m_{D_e^*}^2 m_\phi)^2$
- \dagger reproduce the LCSRs predictions in the lower interval $[0,q_{
 m LCSR,max}^2]$
- \dagger provide an extrapolation in $[q^2_{
 m LCSR,max},q^2_0]$ with the expected analytical properties
- BCL model: z-series expansion [Bourrely 2008]

$$F^{(i)}(q^{2} > 0) = \frac{a_{F(i)}(q^{2})}{1 - q^{2}/m_{D1}^{2}} \left\{ 1 + b_{F(i)} \left[z(q^{2}) - z(0) \right] \right\}, \quad z(q^{2}) = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}}$$

$$\sqrt{q^{2}} H_{ij}(q^{2}) = \frac{1 + b_{ij} \left[z(q^{2}) - z(0) \right]}{\left(1 - q^{2}/m_{D1}^{2} \right)} \mathcal{K}_{ij}(q^{2}) \left[\frac{a_{ij}^{1} \lambda^{3/2}}{m_{D_{s}^{*}} m_{\phi}(m_{D_{s}^{*}}^{2} - m_{\phi}^{2})} + \frac{a_{ij}^{2} \lambda}{\left(m_{D_{s}^{*}}^{2} - m_{\phi}^{2} \right)} + a_{ij}^{3} \lambda^{1/2} \right]$$

$$+ \kappa_{ij} q_{0} \left[m_{D_{s}^{*}} \frac{1 + b_{1}^{ED} z'(q^{2})}{1 - a^{2}/m^{2}} + m_{\phi} \frac{1 + b_{2}^{ED} z'(q^{2})}{1 - a^{2}/m^{2}} \right] .$$
Endpoint relations (13)

• Wigner-Eckart theorem: the helicity information at endpoint is only governed by the Clebsch-Gordan coefficients [Hiller 2014, Grattrex 2016, Hiller 2021]

Shan Cheng (HNU) CEPC2022 October 25, 2022 19 / 27

- Wigner-Eckart theorem: the helicity information at endpoint is only governed by the Clebsch-Gordan coefficients [Hiller 2014, Grattrex 2016, Hiller 2021]
- \dagger helicity independent dynamics is absorbed in to the matrix element M_{111}

$$\begin{split} &H_{\lambda_{q}\bar{\lambda}_{\phi}}(q_{0}^{2}) = C_{\lambda_{cs}\lambda_{q}\bar{\lambda}_{\phi}}M_{111} \,. \end{split} \tag{14} \\ &H_{00}(q_{0}^{2}) \propto C_{000}^{111} = 0 \,, \quad H_{01}(q_{0}^{2}) : H_{0\bar{1}}(q_{0}^{2}) \propto C_{101}^{111} : C_{\bar{1}0\bar{1}}^{111} = -\frac{1}{2} : \frac{1}{2} \,, \\ &H_{10}(q_{0}^{2}) : H_{\bar{1}0}(q_{0}^{2}) \propto C_{110}^{111} : C_{\bar{1}10}^{111} = \frac{1}{2} : -\frac{1}{2} \,, \quad H_{\bar{1}1}(q_{0}^{2}) : H_{1\bar{1}}(q_{0}^{2}) \propto C_{0\bar{1}1}^{111} : C_{01\bar{1}}^{111} = -\frac{1}{2} : \frac{1}{2} \,, \end{split} \tag{15}$$

kinematical factors

$$\begin{split} \mathcal{K}_{00}(q^2) &= \frac{\lambda^{1/2}}{m_{D_s^*} m_\phi} \;, \quad \mathcal{K}_{ij \neq 00} = 1 \;, \quad \kappa_{00} = 0 \;, \quad \kappa_{0\mp} = \kappa_{\pm 0} - \kappa_{\pm\mp} = \pm 1 \;, \\ z'(q^2) &= z(q^2) - z(0) \;, \quad q_1^2 = q_0^2 - q^2 \;, \qquad a_{0\pm}^1 = a_{\pm 0}^1 = a_{\pm\mp}^1 = 0 \;, \quad a_{0\pm}^2 = 0 \;. \end{split} \tag{16}$$

- The end-point relations $\mathcal{H}^{\rm SSE}_{{f 00}}(q^2_0)=0$, $|\mathcal{H}^{\rm SSE}_{ij
 eq 00}(q^2_0)|=0.23^{+0.18}_{-0.23}$
- play an important role to set down the shapes of helicity form factors in the small recoiled regions where the LCSRs calculation is failed
- BK mode: two-pole parameterisation [Becirevic 1999], show almost the same result

Shan Cheng (HNU) CEPC2022 October 25, 2022 20 / 27

Exclusive D_s^* weak decays

- dependence on the $q_{\text{LCSR,max}}^2$ choice are checked by varying it in [0.2, 0.4] GeV^2 , $\mathcal{H}_{ij}(1.2\,\text{GeV}^2)$ change no more than four percents.
- semileptonic decays $D_s^* o \phi l \nu_l$

$$\begin{split} &\frac{d\Gamma_{ij}(q^2)}{dq^2} = \frac{G_F^2 |V_{cs}|^2}{192\pi^3 m_{D_s^*}^3} \, \lambda^{1/2} (m_{D_s^*}^2 \,, m_{\phi}^2 \,, q^2) \, q^2 \, |H_{ij}(q^2)|^2 \,, \\ &\Gamma_{D_s^* \to \phi l \nu_I} = \frac{1}{3} \, \int_0^{q_0^2} dq^2 \, \sum_{i,j=0,\pm} \frac{d\Gamma_{ij}(q^2)}{dq^2} = \left(3.28^{+0.82}_{-0.71}\right) \times 10^{-14} \, \mathrm{GeV} \,. \end{split}$$

hadronic decays (naive factorisation)

$$\begin{split} \mathcal{A}(D_s^{*+} \to \phi \pi^+) &= (-i) \frac{G_F}{\sqrt{2}} \, V_{\text{cs}} \, \text{a}_1 \, m_\pi \, f_\pi \, \sum_{i=0,\pm} H_{0j}(m_\pi^2) \,, \\ \mathcal{A}(D_s^{*+} \to \phi \rho^+) &= \frac{G_F}{\sqrt{2}} \, V_{\text{cs}} \, \text{a}_1 \, m_\rho \, f_\rho^{\parallel(\perp)} \sum_{i,j} H_{ij}(m_\rho^2) \,. \end{split}$$

$$\begin{split} a_1(\mu) &= 0.999, \; f_\pi = 0.130 \, \mathrm{GeV}, \; f_\rho^\parallel = 0.210 \, \mathrm{GeV} \\ \Gamma_{D_e^*+\to\phi\pi^+} &= \left(3.81^{+1.52}_{-1.33}\right) \times 10^{-14} \, \mathrm{GeV} \,, \qquad \Gamma_{D_e^{*+}\to\phi\rho^+} &= \left(1.16^{+0.42}_{-0.39}\right) \times 10^{-13} \, \mathrm{GeV} \,. \end{split}$$

• the result of $\phi\pi$ channel is marginally consistent with the PQCD [Yang 2022]

Shan Cheng (HNU) CEPC2022 October 25, 2022 22 / 27

Experimental potential

• with the lattice evaluation of $\Gamma_{D_s^*}=\left(0.70\pm0.28\right)\times10^{-8}~{\rm GeV}$ [HPQCD 2013]

$$\begin{split} \mathcal{B}(D_s^* \to l\nu) &= (3.49 \pm 1.40) \times 10^{-5} \;, \quad \mathcal{B}(D_s^* \to \phi l\nu) = (0.47 ^{+0.12}_{-0.10} \pm 0.19) \times 10^{-6} \;, \\ \mathcal{B}(D_s^{*+} \to \phi \pi^+) &= (0.54 ^{+0.22}_{-0.19} \pm 0.22) \times 10^{-6} \;, \quad \mathcal{B}(D_s^{*+} \to \phi \rho^+) = (1.65 ^{+0.61}_{-0.56} \pm 0.66) \times 10^{-6} \;. \end{split}$$

- Belle II clear background
- \dagger 2022, 400 fb⁻¹, reconstruct 2 × 10⁵ data samples of $D_s^*(D_s)$ from $\phi\pi$ channel
- \dagger phase 3 running (2024-2026), $10\,\mathrm{ab^{-1}}$, $\mathcal{O}(1\times10^7)$ data sample of $D_s^*(D_s)$
- † the number of D_s^* production is $\mathcal{O}(10^9)$ with $\mathcal{B}(D_s \to \phi \pi) = (4.5 \pm 0.4)\%$
- \dagger excellent potential to study the D_s^* weak decays, $50\,\mathrm{ab}^{-1}$ is hottest expected
- ullet LHCb excellent particle identification to distinguish K,π and μ
- \dagger the channel $D_s^* o \phi(\mathit{KK})\pi$ with the D_s^* producing by $B_s o D_s^* \mu
 u$
- BESIII low background
- \dagger directly produced from e^+e^- collision at the $D_sD_s^*$ threshold
- \dagger have collected $3.07 imes 10^6~D_s^*$ mesons with the $3.2\,{
 m fb}^{-1}$ data at $4.178\,{
 m GeV}$
- \dagger provides the good chance for the leptonic decay $D_{\rm s}^* \to l \nu, \ \ {\rm Statistical} \ {\rm error}$

Shan Cheng (HNU) CEPC2022 October 25, 2022 23 / 27

CEPC CDR

Particle	Tera- Z	Belle II	LHCb
b hadrons			
B^+	6×10^{10}	3×10^{10} (50 ab $^{-1}$ on $\Upsilon(4S)$)	3×10^{13}
B^0	6×10^{10}	$3 \times 10^{10} \ (50 \ \mathrm{ab^{-1}} \ \mathrm{on} \ \Upsilon(4S))$	3×10^{13}
B_s	2×10^{10}	$3 \times 10^{8} \ (5 \text{ab}^{-1} \ \text{on} \ \Upsilon(5S))$	8×10^{12}
b baryons	1×10^{10}		1×10^{13}
Λ_b	1×10^{10}		1×10^{13}
c hadrons			
D^0	2×10^{11}		
D^{+}	6×10^{10}	RESIII (2)(10 ⁶	D^{+}/D^{*+} production
D_s^+	3×10^{10}	DL3111 C(10	(D_s^+/D_s^{*+}) productio (D_s^+/D_s^{*+}) production
Λ_c^+	2×10^{10}	- Belle II O(10	D_s^*/D_s^* production
$ au^+$	3×10^{10}	$5 \times 10^{10} \ (50 \ \mathrm{ab^{-1}} \ \mathrm{on} \ \Upsilon(4S))$	

Table 2.4: Collection of expected number of particles produced at a tera-Z factory from 10^{12} Z-boson decays. We have used the hadronization fractions (neglecting p_T dependencies) from Refs. [431, 432] (see also Ref. [433]). For the decays relevant to this study we also show the corresponding number of particles produced by the full $50 \, \text{ab}^{-1}$ on $\Upsilon(4S)$ and $5 \, \text{ab}^{-1}$ on $\Upsilon(5S)$ runs at Belle II [430], as well as the numbers of b hadrons at LHCb with $50 \, \text{fb}^{-1}$ (using the number of $b\bar{b}$ pairs within the LHCb detector acceptance from [431]).

- CEPC low background
- \dagger without doubt, could do much more/precise study on D_s^* weak decays.

Conclusion

- we study the D_s^* weak decay
- we discuss the experiment potentials and CEPC is highly anticipated
- † first direct measurement of weak decays of vector meson
- \dagger shine light on the study of $\Gamma_{D_s^*}$ and $g_{D_s^*D_s\gamma}\cdots$
- \dagger new playground to examine SM, like the $|V_{cs}|$ and the CKM unitarity
- † check the heavy quark spin symmetry

Shan Cheng (HNU) CEPC2022

25 / 27

The End, Thanks.

• $D_s^* \to \phi$ form factors

$$\begin{split} &\langle\phi(\rho_2,\epsilon_2^*)\big|\bar{s}\gamma_{\mu}(1-\gamma_5)c\big|D_s^*(\epsilon_1,\rho_1)\rangle\\ =&\quad (\epsilon_1\cdot\epsilon_2^*)\Big[\rho_{1\mu}\mathcal{V}_1(q^2)-\rho_{2\mu}\mathcal{V}_2(q^2)\Big]+\frac{(\epsilon_1\cdot q)(\epsilon_2^*\cdot q)}{m_{D_s^*}^2-m_{\phi}^2}\Big[\rho_{1\mu}\mathcal{V}_3(q^2)+\rho_{2\mu}\mathcal{V}_4(q^2)\Big]\\ -&\quad (\epsilon_1\cdot q)\epsilon_{2\mu}^*\mathcal{V}_5(q^2)+(\epsilon_2\cdot q)\epsilon_{1\mu}^*\mathcal{V}_6(q^2)-i\varepsilon_{\mu\nu\rho\sigma}\epsilon_1^{\rho}\epsilon_2^{*\sigma}\Big[\rho_1^{\nu}\mathcal{A}_1(q^2)+\rho_2^{\nu}\mathcal{A}_2(q^2)\Big]\\ +&\quad i\varepsilon_{\mu\nu\rho\sigma}\rho_1^{\rho}\rho_2^{\sigma}\frac{1}{m_{D_s^*}^2-m_{\phi}^2}\Big[\epsilon_1^{\nu}(\epsilon_2^*\cdot q)\mathcal{A}_3(q^2)-\epsilon_2^{\nu}(\epsilon_1^*\cdot q)\mathcal{A}_4(q^2)\Big] \end{split}$$

relations between helicity FFs and orthogonal Lorentz FFs

$$\begin{split} H_{00}(q^2>0) & = & \frac{(m_{D_s^*}^2 + m_{\phi}^2 - q^2)\lambda^{1/2} \left[-\mathcal{V}_1(q^2) + \mathcal{V}_2(q^2) \right]}{4\sqrt{q^2} m_{\phi} m_{D_s^*}} + \frac{\lambda^{3/2} \left[\mathcal{V}_3(q^2) + \mathcal{V}_4(q^2) \right]}{8\sqrt{q^2} m_{\phi} m_{D_s^*} (m_{D_s^*}^2 - m_{\phi}^2)} \\ & - & \frac{\lambda^{1/2} \left[(m_{D_s^*}^2 - m_{\phi}^2 - q^2) \mathcal{V}_5(q^2) - (m_{D_s^*}^2 - m_{\phi}^2 + q^2) \mathcal{V}_6(q^2) \right]}{4\sqrt{q^2} m_{\phi} m_{D_s^*}}, \\ H_{0\pm}(q^2>0) & = & - \frac{\lambda^{1/2} \left[\mathcal{V}_1(q^2) - \mathcal{V}_2(q^2) \right]}{2\sqrt{q^2}} \mp \frac{\left[(m_{D_s^*}^2 - m_{\phi}^2 + q^2) \mathcal{A}_1(q^2) + (m_{D_s^*}^2 - m_{\phi}^2 - q^2) \mathcal{A}_2(q^2) \right]}{2\sqrt{q^2}} \\ H_{\pm0}(q^2>0) & = & \frac{\lambda^{1/2} \mathcal{V}_6(q^2)}{2m_{\phi}} \pm \frac{\lambda \mathcal{A}_3(q^2)}{4m_{\phi}(m_{D_s^*}^2 - m_{\phi}^2)} \pm \left[\frac{\left(m_{D_s^*}^2 + m_{\phi}^2 - q^2 \right) \mathcal{A}_1(q^2)}{2m_{\phi}} + m_{\phi} \mathcal{A}_2(q^2) \right], \\ H_{\mp\pm}(q^2>0) & = & \frac{\lambda^{1/2} \mathcal{V}_5(q^2)}{2m_{D_s^*}} \mp \frac{\lambda \mathcal{A}_4(q^2)}{4m_{D_s^*}(m_{D_s^*}^2 - m_{\phi}^2)} \mp \left[m_{D_s^*} \mathcal{A}_1(q^2) + \frac{\left(m_{D_s^*}^2 + m_{\phi}^2 - q^2 \right) \mathcal{A}_2(q^2)}{2m_{D_s^*}} \right]. \end{split}$$