Exploiting the time evolution of rare decays of B_d and B_s mesons

Sébastien Descotes-Genon

IJCLab CNRS & Université Paris-Saclay, Orsay, France Laboratoire de Physique des 2 Infinis Irène Joliot-Curie

CEPC workshop, (e-)Beijing, 25/10/22

Laboratoire de Physique des 2 Infinis

S. Descotes-Genon (IJCLab)

Time-dependent $B_{d,s}$ rare decays

NP in $b \to s \ell \ell$

- A decade of deviations in $b
 ightarrow s \mu \mu$
- Some indication of Lepton Flavour Universality Violation
- Consistenly explained through NP shifts of b → sℓℓ Wilson coeffs
- Compatible with NP leptoquark models (in particular)

[Algueró et al, Altmanshoffer et al, Geng et al., Ciuchini et al, Hurth et al, Isidori et al....]

Complex NP in $b \rightarrow s \ell \ell$?

- Most studies consider only CP-conserving New Physics
- A few studies involving complex Wilson coeffs: space is allowed !
- But not many observables
 - mainly direct CP-asymmetries measured up to now
 - sensitive to weak phases only if strong phases
 - CKM studies: explore interference between decay and mixing ?

[Biswas, Nandi, Ray, Kumar Patra; Altmannshoffer, Stangl; Bečirević, Fajfer, Košnik, Smolkovič]]

Time-dependent $B_{d,s}$ rare decays

A case study: $B \rightarrow K\ell\ell$

Consider first $B^- \rightarrow K^- \ell^+ \ell^-$ (no mixing)

 θ_{ℓ} : angle between \vec{p}_{ℓ^-} and $-\vec{p}_{B^-}$ in $\ell^+\ell^-$ rest frame

 $\frac{d^2 \Gamma(B^- \to K^- \ell \ell)}{dq^2 \ d \cos \theta_\ell} = \bar{G}_0(q^2) + \bar{G}_1(q^2) \cos \theta_\ell + \bar{G}_2(q^2) \frac{1}{2} (3 \cos^2 \theta_\ell - 1)$

A case study: $B \rightarrow K\ell\ell$

Consider first $B^- \rightarrow K^- \ell^+ \ell^-$ (no mixing)

 θ_{ℓ} : angle between \vec{p}_{ℓ^-} and $-\vec{p}_{B^-}$ in $\ell^+\ell^-$ rest frame

$$\frac{d^2 \Gamma(B^- \to K^- \ell \ell)}{dq^2 \ d \cos \theta_\ell} = \bar{G}_0(q^2) + \bar{G}_1(q^2) \cos \theta_\ell + \bar{G}_2(q^2) \frac{1}{2} (3 \cos^2 \theta_\ell - 1)$$

Angular coefficients in terms of several decay amplitudes ($m_\ell \simeq 0$)

$$\begin{split} \bar{G}_{0} &= & \frac{4}{3} \left| \bar{h}_{V} \right|^{2} + \frac{4}{3} \left| \bar{h}_{A} \right|^{2} + 2 \left| \bar{h}_{S} \right|^{2} + 2 \left| \bar{h}_{P} \right|^{2} + \frac{8}{3} \left| \bar{h}_{T_{t}} \right|^{2} + \frac{4}{3} \left| \bar{h}_{T} \right|^{2} \\ \bar{G}_{1} &= & 4 \mathrm{Im} \left[2 \bar{h}_{T_{t}} \bar{h}_{S}^{*} + \sqrt{2} \bar{h}_{T} \bar{h}_{P}^{*} \right] \\ \bar{G}_{2} &= & - \frac{4}{3} \left(\left| \bar{h}_{V} \right|^{2} + \left| \bar{h}_{A} \right|^{2} - 2 \left| \bar{h}_{T} \right|^{2} - 4 \left| \bar{h}_{T_{t}} \right|^{2} \right) \end{split}$$

[Bobeth, Hiller, Piranishvil; Gratrex, Hopfer, Zwicky; Bečirević, Košnik, Mescia, Schneider]

Amplitudes in the charged case

Low-Energy Effective Theory (LEFT) at $\mu = m_b$

 $\mathcal{H}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i \in I} \mathcal{C}_i \mathcal{O}_i + \dots \qquad I = \{7, 7', 9\ell, 9'\ell, 10\ell, 10'\ell, S\ell, S'\ell, P\ell, P'\ell, T\ell, T'\ell\}$

- Short distances: Wilson coeffs C of Low-Energy Effective Theory
- Long distances: Form factors $f_{0,+,T}$ for associated LEFT operators

Amplitudes in the charged case

Low-Energy Effective Theory (LEFT) at $\mu = m_b$

 $\mathcal{H}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i \in I} \mathcal{C}_i \mathcal{O}_i + \dots \qquad I = \{7, 7', 9\ell, 9'\ell, 10\ell, 10'\ell, S\ell, S'\ell, P\ell, P'\ell, T\ell, T'\ell\}$

- Short distances: Wilson coeffs C of Low-Energy Effective Theory
- Long distances: Form factors $f_{0,+,T}$ for associated LEFT operators

leading to the expressions for \bar{h}

$$\begin{split} \bar{h}_{V} &= \mathcal{N} \frac{\sqrt{\lambda_{B}}}{2\sqrt{q^{2}}} \left(\frac{2m_{b}}{m_{B}+m_{K}} (\mathcal{C}_{7}+\mathcal{C}_{7'}) f_{T} + (\mathcal{C}_{9}+\mathcal{C}_{9'}) f_{+} \right) & \bar{h}_{A} &= \mathcal{N} \frac{\sqrt{\lambda_{B}}}{2\sqrt{q^{2}}} (\mathcal{C}_{10}+\mathcal{C}_{10'}) f_{+} \\ \bar{h}_{S} &= \mathcal{N} \frac{m_{B}^{2}-m_{K}^{2}}{2(m_{b}-m_{s})} (\mathcal{C}_{S}+\mathcal{C}_{S'}) f_{0} & \bar{h}_{P} &= \mathcal{N} \frac{m_{B}^{2}-m_{K}^{2}}{2(m_{b}-m_{s})} (\mathcal{C}_{P}+\mathcal{C}_{P'}) f_{0} \\ \bar{h}_{T} &= -i \mathcal{N} \frac{\sqrt{\lambda_{B}}}{\sqrt{2}(m_{B}+m_{K})} (\mathcal{C}_{T}-\mathcal{C}_{T'}) f_{T} & \bar{h}_{T_{t}} &= -i \mathcal{N} \frac{\sqrt{\lambda_{B}}}{2(m_{B}+m_{K})} (\mathcal{C}_{T}+\mathcal{C}_{T'}) f_{T} \end{split}$$

- $\bullet\,$ up to a normalisation factor ${\cal N}$
- nonlocal contributions coming from $c\bar{c}$ loops absorbed in C_9

CP conjugation in the charged case

Defining θ_{ℓ} using ℓ^{-} (ℓ^{-}) for B^{-} (B^{+}) yields related CP-conjugate qties

$$\frac{d^2 \Gamma(B^- \to K^- \ell \ell)}{dq^2 \ d \cos \theta_\ell} \leftrightarrow \frac{d^2 \Gamma(B^+ \to K^+ \ell \ell)}{dq^2 \ d \cos \theta_\ell} \qquad \bar{G} \leftrightarrow G \qquad \bar{h} \leftrightarrow h$$

obtained by

- complex-conjugating all the weak phases
- keeping strong phases unchanged, in particular from cc loops

If all CP-violating effects are neglected, one gets $G_i = \overline{G}_i$

Observables in the charged case

CP-averaged differential decay rate

$$\frac{d^2 \Gamma(B^- \to K^- \ell \ell + B^+ \to K^+ \ell \ell)}{dq^2 \, d \cos \theta_\ell} = 2 \Gamma_\ell \left[\frac{1}{2} F_H^\ell + A_{FB}^\ell \cos \theta_\ell + \frac{3}{4} (1 - F_H^\ell) (1 - \cos^2 \theta_\ell) \right]$$

in terms of the decay rate and two angular observables

$$\Gamma_\ell = G_0 + \bar{G}_0\,, \qquad A_{FB}^\ell = \frac{G_1 + \bar{G}_1}{2(G_0 + \bar{G}_0)}\,, \qquad F_H^\ell = 1 + \frac{G_2 + \bar{G}_2}{G_0 + \bar{G}_0}\,,$$

Observables in the charged case

CP-averaged differential decay rate

$$\frac{d^2 \Gamma(B^- \to K^- \ell \ell + B^+ \to K^+ \ell \ell)}{dq^2 \, d \cos \theta_\ell} = 2 \Gamma_\ell \left[\frac{1}{2} F_H^\ell + A_{FB}^\ell \cos \theta_\ell + \frac{3}{4} (1 - F_H^\ell) (1 - \cos^2 \theta_\ell) \right]$$

in terms of the decay rate and two angular observables

$$\Gamma_\ell = G_0 + \bar{G}_0\,, \qquad A_{FB}^\ell = \frac{G_1 + \bar{G}_1}{2(G_0 + \bar{G}_0)}\,, \qquad F_H^\ell = 1 + \frac{G_2 + \bar{G}_2}{G_0 + \bar{G}_0}\,,$$

Direct CP-asymmetries of the form $A_i = \frac{G_i - \bar{G}_i}{G_i + \bar{G}_i}$

- probe differences of the form $|h_X|^2 |\bar{h}_X|^2$
- vanish unless several strong and weak phases in amplitudes
- strong phases from $c\bar{c}$ in the SM (still under theoretical scrutiny)
- probing only CP-violating (weak) NP phases in $C_{7,7'}$ and $C_{9,9'}$

Observables in the charged case

CP-averaged differential decay rate

$$\frac{d^2 \Gamma(B^- \to K^- \ell \ell + B^+ \to K^+ \ell \ell)}{dq^2 \, d \cos \theta_\ell} = 2 \Gamma_\ell \left[\frac{1}{2} F_H^\ell + A_{FB}^\ell \cos \theta_\ell + \frac{3}{4} (1 - F_H^\ell) (1 - \cos^2 \theta_\ell) \right]$$

in terms of the decay rate and two angular observables

$$\Gamma_\ell = G_0 + \bar{G}_0\,, \qquad A_{FB}^\ell = \frac{G_1 + \bar{G}_1}{2(G_0 + \bar{G}_0)}\,, \qquad F_H^\ell = 1 + \frac{G_2 + \bar{G}_2}{G_0 + \bar{G}_0}\,,$$

Direct CP-asymmetries of the form $A_i = \frac{G_i - \bar{G}_i}{G_i + \bar{G}_i}$

- probe differences of the form $|h_X|^2 |\bar{h}_X|^2$
- vanish unless several strong and weak phases in amplitudes
- strong phases from $c\bar{c}$ in the SM (still under theoretical scrutiny)
- probing only CP-violating (weak) NP phases in $C_{7,7'}$ and $C_{9,9'}$

Neutral case will bring mixing, and new CP-violating observables

Adaptation to the neutral case

$B_d \to K_S \ell \ell$ not decay specific

same definition for θ_{ℓ} for B_d and \bar{B}_d (from ℓ^-), leading to

$$\frac{d^{2}\Gamma[B_{d} \to K_{S}\ell^{+}\ell^{-}]}{ds \, d\cos\theta_{\ell}} = \sum_{i} G_{i}(s)P_{i}(\cos\theta_{\ell})$$
$$\frac{d^{2}\Gamma[\bar{B}_{d} \to K_{S}\ell^{+}\ell^{-}]}{ds \, d\cos\theta_{\ell}} = \sum_{i} \zeta_{i}\bar{G}_{i}(s)P_{i}(\cos\theta_{\ell})$$
$$\zeta_{0,2} = 1 \text{ and } \zeta_{1} = -1 \text{ from } B^{-} \text{ kinematics}$$

S. Descotes-Genon (IJCLab) Time-dependent $B_{d,s}$ rare decays

Adaptation to the neutral case

$B_d \to K_S \ell \ell$ not decay specific

same definition for θ_{ℓ} for B_d and \overline{B}_d (from ℓ^-), leading to

$$\frac{d^2 \Gamma[B_d \to K_S \ell^+ \ell^-]}{ds \, d \cos \theta_\ell} = \sum_i G_i(s) P_i(\cos \theta_\ell)$$
$$\frac{d^2 \Gamma[\bar{B}_d \to K_S \ell^+ \ell^-]}{ds \, d \cos \theta_\ell} = \sum_i \zeta_i \bar{G}_i(s) P_i(\cos \theta_\ell)$$

 $\zeta_{0,2} = 1$ and $\zeta_1 = -1$ from B^- kinematics

Discussion of CP-violation for non-decay specific modes

- Starting from $h_X(B_d \rightarrow f_{CP})$
- Theo \overline{G}_i : $\overline{h}_X \equiv h_X(\overline{B}_d \to \overline{f}_{CP})$ with CP-conjugation applied to f_{CP} , obtained by changing sign of weak phases
- Pheno \widetilde{G}_i : $\widetilde{h}_X \equiv h_X(\overline{B}_d \to f_{CP})$ without CP-conjugation on f_{CP} , useful for time evolution due to mixing before decay in f_{CP}
- $\widetilde{G}_i = \zeta_i \overline{G}_i$ from *CP*-parity of ampl. *h*, consistent with kinematics

Time evolution and mixing

inducing a time-dependence of the angular observables

$$G_i(t) = G_i(h_X \to h_X(t)) \quad \widetilde{G}_i(t) = G_i(h_X \to \widetilde{h}_X(t))$$

Time evolution and mixing

inducing a time-dependence of the angular observables

$$G_i(t) = G_i(h_X \to h_X(t)) \quad \widetilde{G}_i(t) = G_i(h_X \to \widetilde{h}_X(t))$$

$$G_{i}(t) + \widetilde{G}_{i}(t) = e^{-\Gamma t} \Big[(G_{i} + \widetilde{G}_{i}) \cosh(y\Gamma t) - h_{i} \sinh(y\Gamma t) \Big]$$

$$G_{i}(t) - \widetilde{G}_{i}(t) = e^{-\Gamma t} \Big[(G_{i} - \widetilde{G}_{i}) \cos(x\Gamma t) - s_{i} \sin(x\Gamma t) \Big]$$

mixing angle q/p = e^{iφ} with φ_{Bd} = -2β and φ_{Bs} = 2β_s
mixing parameters x ≡ Δm/Γ, y ≡ ΔΓ/(2Γ)

An illustration with G_0

The time-dependent analysis involves two new observables

$$s_{0} = 2 \operatorname{Im} \left[e^{i\phi} \left[\frac{4}{3} \tilde{h}_{V} h_{V}^{*} + \frac{4}{3} \tilde{h}_{A} h_{A}^{*} + 2 \tilde{h}_{S} h_{S}^{*} + 2 \tilde{h}_{P} h_{P}^{*} + \frac{8}{3} \tilde{h}_{T_{t}} h_{T_{t}}^{*} + \frac{4}{3} \tilde{h}_{T} h_{T}^{*} \right] \right],$$

$$h_{0} = 2 \operatorname{Re} \left[e^{i\phi} \left[\frac{4}{3} \tilde{h}_{V} h_{V}^{*} + \frac{4}{3} \tilde{h}_{A} h_{A}^{*} + 2 \tilde{h}_{S} h_{S}^{*} + 2 \tilde{h}_{P} h_{P}^{*} + \frac{8}{3} \tilde{h}_{T_{t}} h_{T_{t}}^{*} + \frac{4}{3} \tilde{h}_{T} h_{T}^{*} \right] \right],$$

An illustration with G_0

The time-dependent analysis involves two new observables

$$s_{0} = 2 \operatorname{Im} \left[e^{i\phi} \left[\frac{4}{3} \tilde{h}_{V} h_{V}^{*} + \frac{4}{3} \tilde{h}_{A} h_{A}^{*} + 2 \tilde{h}_{S} h_{S}^{*} + 2 \tilde{h}_{P} h_{P}^{*} + \frac{8}{3} \tilde{h}_{T_{t}} h_{T_{t}}^{*} + \frac{4}{3} \tilde{h}_{T} h_{T}^{*} \right] \right] ,$$

$$h_{0} = 2 \operatorname{Re} \left[e^{i\phi} \left[\frac{4}{3} \tilde{h}_{V} h_{V}^{*} + \frac{4}{3} \tilde{h}_{A} h_{A}^{*} + 2 \tilde{h}_{S} h_{S}^{*} + 2 \tilde{h}_{P} h_{P}^{*} + \frac{8}{3} \tilde{h}_{T_{t}} h_{T_{t}}^{*} + \frac{4}{3} \tilde{h}_{T} h_{T}^{*} \right] \right]$$

compared to the initial combination

$$ar{G}_{0}=rac{4}{3}\left|ar{h}_{V}
ight|^{2}+rac{4}{3}\left|ar{h}_{A}
ight|^{2}+2\left|ar{h}_{S}
ight|^{2}+2\left|ar{h}_{P}
ight|^{2}+rac{8}{3}\left|ar{h}_{ au_{l}}
ight|^{2}+rac{4}{3}\left|ar{h}_{ au}
ight|^{2}$$

An illustration with G_0

The time-dependent analysis involves two new observables

$$\begin{split} s_0 &= 2 \mathrm{Im} \left[e^{i\phi} \left[\frac{4}{3} \tilde{h}_V h_V^* + \frac{4}{3} \tilde{h}_A h_A^* + 2 \tilde{h}_S h_S^* + 2 \tilde{h}_P h_P^* + \frac{8}{3} \tilde{h}_{T_l} h_{T_l}^* + \frac{4}{3} \tilde{h}_T h_T^* \right] \right] \,, \\ h_0 &= 2 \mathrm{Re} \left[e^{i\phi} \left[\frac{4}{3} \tilde{h}_V h_V^* + \frac{4}{3} \tilde{h}_A h_A^* + 2 \tilde{h}_S h_S^* + 2 \tilde{h}_P h_P^* + \frac{8}{3} \tilde{h}_{T_l} h_{T_l}^* + \frac{4}{3} \tilde{h}_T h_T^* \right] \right] \,. \end{split}$$

compared to the initial combination

$$\bar{G}_{0}=\frac{4}{3}\left|\bar{h}_{V}\right|^{2}+\frac{4}{3}\left|\bar{h}_{A}\right|^{2}+2\left|\bar{h}_{S}\right|^{2}+2\left|\bar{h}_{P}\right|^{2}+\frac{8}{3}\left|\bar{h}_{\mathcal{T}_{l}}\right|^{2}+\frac{4}{3}\left|\bar{h}_{T}\right|^{2}$$

- illustration of interference between B_d -mixing and $B \rightarrow K\ell\ell$ decay
- involves complex conjugation and CP-conjugation
- additional information wrt CP-asymmetries from time dependent analysis of $G_0(t) + \widetilde{G}_0(t)$ and $G_0(t) - \widetilde{G}_0(t)$
- $y_{B_d} \simeq 0$: no h_0 but s_0 from $d\Gamma(B_d(t) \to K_S \ell \ell) d\Gamma(\bar{B}_d(t) \to K_S \ell \ell)$

Time-integrated version

- Coherent production of $B\bar{B}$ pair
 - $\Upsilon(nS) \rightarrow B\overline{B}$ intricated (B-factories)
 - *t* time diff between tag *B* and reconstructed *B* decays, *t* ∈] − ∞, ∞[
 - time integ washes away sin and sinh
- Incoherent production of $B\bar{B}$ pair
 - $pp \rightarrow b\bar{b}$ (LHC) or $Z \rightarrow b\bar{b}$ (Z factories) hadronising "separately"
 - *t* time after production of the *B*-meson of interest, $t \in [0, \infty[$

Time-integrated version

- Coherent production of BB pair
 - $\Upsilon(nS) \rightarrow B\overline{B}$ intricated (B-factories)
 - t time diff between tag B and reconstructed *B* decays, $t \in] -\infty, \infty[$
 - time integ washes away sin and sinh

- $pp \rightarrow b\bar{b}$ (LHC) or $Z \rightarrow b\bar{b}$ (Z factories) hadronising "separately"
- *t* time after production of the *B*-meson of interest, $t \in [0, \infty)$

Integrating over time

(no terms in h, s for B-factories)

$$\langle G_i + \widetilde{G}_i \rangle_{\text{Hadronic}} = \frac{1}{\Gamma} \left[\frac{1}{1 - y^2} \times (G_i + \widetilde{G}_i) - \frac{y}{1 - y^2} \times h_i \right] \langle G_i - \widetilde{G}_i \rangle_{\text{Hadronic}} = \frac{1}{\Gamma} \left[\frac{1}{1 + x^2} \times (G_i - \widetilde{G}_i) - \frac{x}{1 + x^2} \times s_i \right]$$

• s_i same order as $G_i - G_i$ for B_d , enhanced for B_s , but tagging • h_i vanishes for B_d , suppressed w.r.t. $G_i + G_i$ for B_s , no tagging Time-dependent $B_{d,s}$ rare decays S. Descotes-Genon (IJCLab)

Exploiting the new observables

•
$$\sigma_i = \frac{s_i}{2(G_0 + \bar{G}_0)} = \frac{s_i}{2\Gamma_\ell}$$
 directly related to $\sin \phi$ for SM
• combinations more sensitive (scalar/tensor/complex contributions)
 $R_S \equiv \frac{2}{\sin \phi} (-\sigma_2 + 2\sigma_0) - F_H^\ell + 3$ $R_{T_l} \equiv \frac{2}{\sin \phi} \sigma_2 + F_H^\ell - 1$ $R_W \equiv R_S + 3R_{T_l}$

	SM	Scen. 1	Scen. 2	Scen. 3	$C_{S} = 0.2$	$C_{T} = 0.2$
σ_0	0.368(5)	0.273(6)	0.402(5)	0.43(1)	0.368(5)	0.368(5)
σ_2	-0.359(5)	-0.266(6)	-0.392(4)	-0.415(9)	-0.359(5)	-0.357(5)
R _S	-0.107(4)	0.69(2)	-0.39(2)	-0.59(9)	-0.105(4)	-0.107(4)
R_{T_t}	0.035(1)	-0.225(8)	0.128(7)	0.19(3)	0.035(1)	0.036(1)
$R_W \times 10^2$	-0.179(8)	1.09(4)	-0.63(4)	-1.0(1)	-0.01(1)	0.04(3)

Distinguishing different scenarios a priori allowed by the global fits

• Scenario 1:
$$C_{9\mu}^{NP} = -1.12 + i1.00$$

- Scenario 2: $C_{9\mu}^{NP} = -1.14 i0.22$, $C_{9'\mu}^{NP} = 0.40 i0.38$
- Scenario 3: $C_{9\mu}^{NP} = -1.13 i0.12$, $C_{9'\mu} = 0.52 i1.80$, $C_{10\mu}^{NP} = 0.41 + i0.13$
- Scenarios with scalar or tensor contributions

S. Descotes-Genon (IJCLab)

Time-dependent $B_{d,s}$ rare decays

More time-dependent analysis for $b ightarrow s\ell\ell$

We can play a similar game with

- $B_s \to f_0 \ell \ell$
- $B_d \to K^* (\to K_S \pi^0) \ell \ell$
- $B_s
 ightarrow \phi \ell \ell$ (in general and at low q^2)

In each case, new observables

- interference between mixing and decay
- sensitive to NP complex phases

accessible through

- time-dependent analysis
- time-integrated observables in incoherent productions (CepC !)
- values of mixing parameters favouring s_i, coming from dΓ(B_q → Mℓℓ) - dΓ(B_q → Mℓℓ), requiring tagging

[SDG, Novoa-Brunet, Vos]

[SDG, Virto]

[SDG, Plakias, Sumensari]

Shifting to $b \rightarrow s \nu \bar{\nu}$

• Often related to $b \rightarrow s\ell\ell$ for NP for left-handed doublets

Shifting to $b \rightarrow s \nu \bar{\nu}$

Often related to b → sℓℓ for NP for left-handed doublets
 Much simpler LEFT (if only left-handed neutrinos)

$$\mathcal{H}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{lb} V_{ls}^* \sum_{\nu} (C_L^{\nu} \mathcal{O}_L^{\nu} + C_R^{\nu} \mathcal{O}_R^{\nu}) + \text{h.c.} \quad \mathcal{O}_{L,R}^{\nu} = \frac{e^2}{8\pi^2} (\bar{s} \gamma_{\mu} P_{L,R} b) (\bar{\nu} \gamma^{\mu} P_L \nu)$$

Shifting to $b \rightarrow s \nu \bar{\nu}$

Often related to b → sℓℓ for NP for left-handed doublets
 Much simpler LEFT (if only left-handed neutrinos)

$$\mathcal{H}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{\nu} (C_L^{\nu} \mathcal{O}_L^{\nu} + C_R^{\nu} \mathcal{O}_R^{\nu}) + \text{h.c.} \quad \mathcal{O}_{L,R}^{\nu} = \frac{e^2}{8\pi^2} (\bar{s} \gamma_{\mu} P_{L,R} b) (\bar{\nu} \gamma^{\mu} P_{L\nu})$$

• Not yet observed, with usual observables $R_X = X/X_{SM}$

$$\begin{aligned} R_{\mathcal{B}(B\to K\nu\bar{\nu})} &= \frac{1}{3} \sum_{\nu} (1-2\eta_{\nu}) \epsilon_{\nu}^{2} \qquad R_{\mathcal{B}(B\to K^{*}\nu\bar{\nu})} = \frac{1}{3} \sum_{\nu} (1+1.31\eta_{\nu}) \epsilon_{\nu}^{2} \\ R_{\mathcal{B}(B\to X_{S}\nu\bar{\nu})} &= \frac{1}{3} \sum_{\nu} (1+0.09\eta_{\nu}) \epsilon_{\nu}^{2} \qquad R_{\langle F_{L} \rangle} = \frac{\sum_{\nu} (1+2\eta_{\nu}) \epsilon_{\nu}^{2}}{\sum_{\nu} (1+1.31\eta_{\nu}) \epsilon_{\nu}^{2}} \end{aligned}$$

with numerical values from ratio of left- and right-helicities and

$$\epsilon_{\nu} = \frac{\sqrt{|C_{L}^{\nu}|^{2} + |C_{R}^{\nu}|^{2}}}{|C_{L,\rm{SM}}^{\nu}|} \qquad \eta_{\nu} = \frac{-\mathrm{Re}(C_{L}^{\nu}C_{R}^{\nu*})}{|C_{L}^{\nu}|^{2} + |C_{R}^{\nu}|}$$

Shifting to $b ightarrow s u ar{ u}$

Often related to b → sℓℓ for NP for left-handed doublets
 Much simpler LEFT (if only left-handed neutrinos)

$$\mathcal{H}_{\mathrm{eff}} = -rac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{
u} (C_L^{
u} \mathcal{O}_L^{
u} + C_R^{
u} \mathcal{O}_R^{
u}) + \mathrm{h.c.} \quad \mathcal{O}_{L,R}^{
u} = rac{e^2}{8\pi^2} (ar{s} \gamma_\mu P_{L,R} b) (ar{
u} \gamma^\mu P_{L
u})$$

• Not yet observed, with usual observables $R_X = X/X_{SM}$

$$\begin{split} R_{\mathcal{B}(B\to K\nu\bar{\nu})} &= \frac{1}{3} \sum_{\nu} (1-2\eta_{\nu}) \epsilon_{\nu}^{2} \qquad R_{B(B\to K^{*}\nu\bar{\nu})} = \frac{1}{3} \sum_{\nu} (1+1.31\eta_{\nu}) \epsilon_{\nu}^{2} \\ R_{B(B\to X_{S}\nu\bar{\nu})} &= \frac{1}{3} \sum_{\nu} (1+0.09\eta_{\nu}) \epsilon_{\nu}^{2} \qquad R_{\langle F_{L} \rangle} = \frac{\sum_{\nu} (1+2\eta_{\nu}) \epsilon_{\nu}^{2}}{\sum_{\nu} (1+1.31\eta_{\nu}) \epsilon_{\nu}^{2}} \end{split}$$

with numerical values from ratio of left- and right-helicities and

$$\epsilon_{\nu} = \frac{\sqrt{|C_{L}^{\nu}|^{2} + |C_{R}^{\nu}|^{2}}}{|C_{L,\text{SM}}^{\nu}|} \qquad \eta_{\nu} = \frac{-\text{Re}(C_{L}^{\nu}C_{R}^{\nu*})}{|C_{L}^{\nu}|^{2} + |C_{R}^{\nu}|^{2}}$$

 Complex NP accessible only through η_ν and only if right-handed currents (not necessarily favoured by b → sℓℓ)

S. Descotes-Genon (IJCLab)

Time-dependent $B_{d,s}$ rare decays

Time-dependent observable for $B_d o K_S u ar{ u}$

[SDG, Fajfer, Kamenik, Novoa-Brunet]

For $B_d \to K_S \nu \bar{\nu}$, few observables

- branching ratio B
- no angular observables since no measurable θ_{ν}
- time-dependent asymmetry related to differential decay rate

$$A^{\mathcal{B}} = \frac{d\Gamma(B_d \to K_{\mathcal{S}}\nu\bar{\nu}) - d\Gamma(\bar{B}_d \to K_{\mathcal{S}}\nu\bar{\nu})}{d\Gamma(B_d \to K_{\mathcal{S}}\nu\bar{\nu}) + d\Gamma(\bar{B}_d \to K_{\mathcal{S}}\nu\bar{\nu})}$$

whose numerator involve the time-dependent angular coefficients

$$G_0^{\nu}(t) - \bar{G}_0^{\nu}(t) = e^{-\Gamma t}[(G_0^{\nu} - \bar{G}_0^{\nu})\cos(x\Gamma t) - s_0^{\nu}\sin(x\Gamma t)]$$

with the interference between mixing and decay

$$S_0^{
u} = \mathrm{Im}\left[e^{i\phi}\mathcal{N}^2(C_L^{
u}+C_R^{
u})^2
ight]rac{8}{3}rac{\lambda_{\mathcal{B}}(q^2)}{q^2}f_+^2(q^2) \propto \mathrm{Im}[e^{i\phi}(V_{tb}V_{ts}^*)^2(C_L^{
u}+C_R^{
u})^2]$$

which can also be integrated over time for incoherent production

Vector final states

We can play similarly with the time dependence of

$$B_d \to K^{*0} (\to K_S \pi^0) \nu \bar{\nu} \qquad B_s \to \phi \nu \bar{\nu}$$

- Fewer angular observables than $b \rightarrow s\ell\ell$ (no measurable θ_{ν})
- For some ratios of observables, cancellation of form factors, no hadronic uncertainties to be taken into account
- for $B_d \to K^* (\to K_S \pi^0) \nu \bar{\nu}$, only CP-asymmetries (y = 0)
 - A^{F_L} constrains $\text{Im}[e^{-2i\beta}(V_{tb}V_{ts}^*)^2 \sum_{\nu} (C_L^{\nu} C_R^{\nu})^2]$ w/o form factors
 - $A^{\mathcal{B}}$ combination of $\operatorname{Im}[e^{-2i\beta}(V_{tb}V_{ts}^*)^2 \sum_{\nu} (C_L^{\nu} C_R^{\nu})^2]$ and $\operatorname{Im}[e^{-2i\beta}(V_{tb}V_{ts}^*)^2 \sum_{\nu} (C_L^{\nu} + C_R^{\nu})^2]$ involving form factors.
- for $B_s \rightarrow \phi \nu \bar{\nu}$, CP-averaged quantities are also accessible
 - F_L constrains $\operatorname{Re}[\sum_{\nu} (C_L^{\nu} C_R^{\nu})^2]$ w/o form factors
 - \mathcal{B} combination of $\operatorname{Re}[\sum_{\nu} (C_{L}^{\nu} C_{R}^{\nu})^{2}]$ and $\operatorname{Re}[\sum_{\nu} (C_{L}^{\nu} + C_{R}^{\nu})^{2}]$ involving form factors.

Projections

NP models based on General Minimal Flavour Violation:

•
$$C_L^{\nu_{\mu},\text{NP}} = e^{-i\phi_{\text{NP}}} \left| C_L^{\nu,\text{SM}} \right| /4$$

• $C_R^{\nu,\text{NP}} = 0$

• Various rescaling for the couplings between leptons

- the simplest case $\lambda_{ee}^{\ell} = \lambda_{\tau\tau}^{\ell} = 0$
- the democratic scenario $\lambda_{ee}^{\ell} = \lambda_{\mu\mu}^{\ell} = \lambda_{\tau\tau}^{\ell}$
- the anomaly-free assignment $\lambda_{\mu\mu}^{\ell} = -\lambda_{\tau\tau}^{\ell}$ and $\lambda_{ee}^{\ell} = 0$
- the hierarchical charge scenario $\lambda_{\alpha\alpha}^{\ell}/\lambda_{\mu\mu}^{\ell}=m_{\alpha}/m_{\mu}$ [orange]
- 3 gray bands: expected experimental uncertainties for N=200, N=2000, and N=20000 events (from Belle II 50 ab⁻¹ to FCC ?)

Similar studies/projections for $B_d \to K^{*0}(\to K_S \pi^0)\ell\ell$ and $B_s \to \phi\ell\ell$

[SDG, Fajfer, Kamenik, Novoa-Brunet]

[yellow]

[green]

[purple]

Summary

Complex NP in $b
ightarrow s\ell\ell$ and b
ightarrow s
u
u

- Currently allowed by experimental constraints
- Only direct CP-asymmetries for $b \rightarrow s\ell\ell$, requiring strong phases
- Usual $b \rightarrow s \nu \nu$ obs sensitive only if right-handed currents

CP-violation in interference in mixing and decay

- CP-eigenstates and thus not decay-specific modes
- Time-dependent analysis yielding new observables
- Also through time-integrated observables if incoherent production
- Mostly through $d\Gamma(B_q(t) \to f_{CP}\ell\ell) d\Gamma(\bar{B}_q(t) \to f_{CP}\ell\ell)$
- Sensitive to weak phases, without relying on strong phases

[SDG, Virto; SDG, Novoa-Brunet, Vos; SDG, Plakias, Sumensari; SDG, Fajfer, Kamenik, Novoa-Brunet]

New probes of complex NP in $b \rightarrow s\ell\ell$ and $b \rightarrow s\nu\bar{\nu}$ Potentially interesting for CepC (?)