Explanation of W boson mass anomaly and flavor physics in a model with extra U(1) gauge symmetry

Takaaki Nomura (Sichuan Univ. [四川大学])

Based on K.Nagao, TN, H.Okada, arXiv: 2206.15256

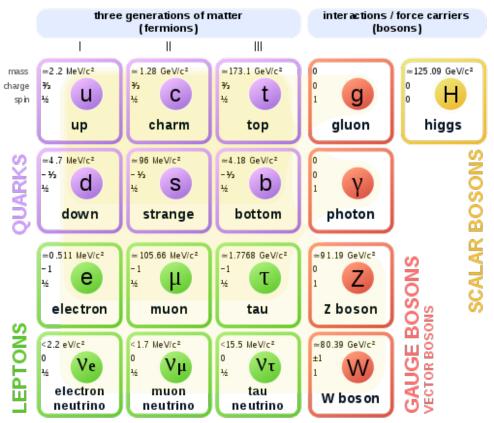
2022-10-25 International CEPC workshop 2022

Out line of the talk

- 1. Introduction
- 2. A model with leoptophobic U(1)
- 3. Phenomenology of the model
- 4. Summary

The standard model (SM) of particle physics is successful

Standard Model of Elementary Particles



The SM is based on gauge symmetry $SU(3)_c \times SU(2)_L \times U(1)_Y$

However there should be beyond the SM (BSM) physics

There are some experimental anomalies that can be hints of new physics

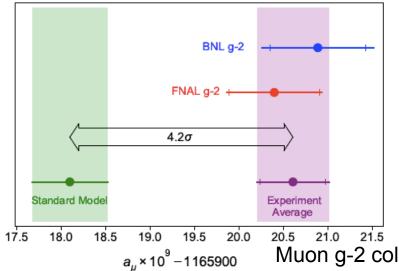
CDF II W bosom mass

 $m_W = (80.433 \pm 0.0064_{\text{stat}} \pm 0.0069_{\text{syst}}) \text{ GeV}$ (CDFII corraboration, 2022)

SM prediction: 80.357 ± 0.006 GeV (PDG)

CDF II W boson mass is deviated from the SM prediction by 7σ

Muon anomalous dipole magnetic moment (muon g-2)



$$a_{\mu}^{BNL} = (11659208.9 \pm 5.4 \pm 3.3) \times 10^{-10}$$

 $a_{\mu}^{FNAL} = (11659204.0 \pm 5.1 \pm 1.9) \times 10^{-10}$

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = (25.1 \pm 5.9) \times 10^{-10}$$

Combined result (4.2 deviation)

⁵ 20.5 21.5 21.5 21.5 Muon g-2 collaboration, PRL126 (2021)

They can be explained by extending the SM

One simple extension of the SM

- A model with extra U(1) gauge symmetry
- ◆The SM is based on gauge symmetry

The BSM would be also described by gauge symmetry

- It restricts interactions : good for phenomenological model building
 - Controlling interactions by symmetry
 - It provide new neutral gauge boson: Z' boson
 - > U(1) breaking scalar VEV \rightarrow Higgs physics
 - Explaining experimental anomalies: muon g-2, W boson mass
 - ≻ Etc.

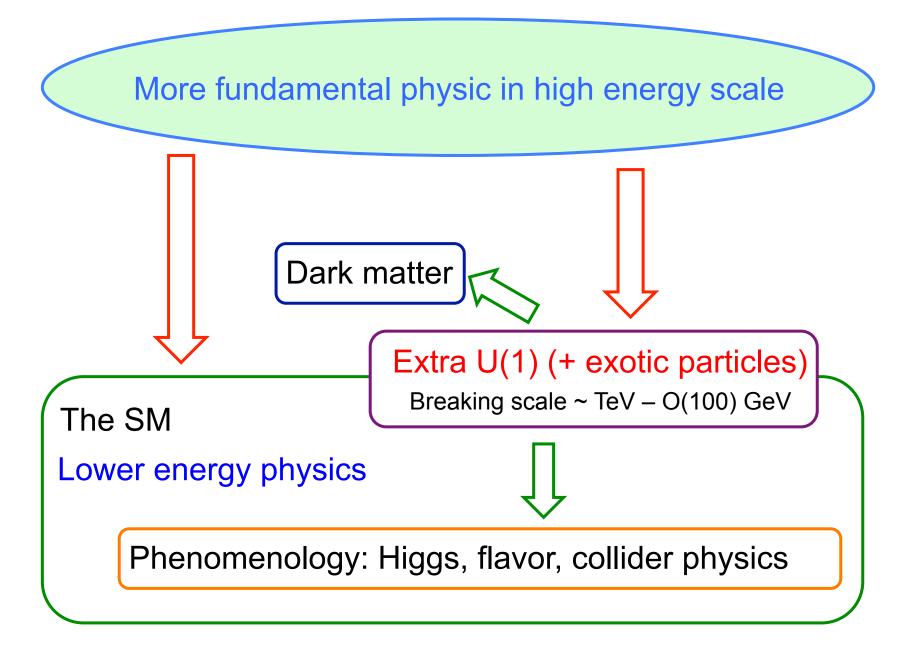
An extra U(1) would appear from higher scale

From grand unified theory (GUT)

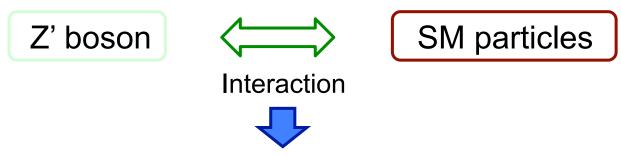
 $SO(10) \supset SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \supset SU(3) \times SU(2)_L \times U(1)_R \times U(1)_{B-L}$

- $E_6 \supset SO(10) \times U(1)_{\psi} \supset SU(5) \times U(1)_{\psi} \times U(1)_{\chi}$
 - From other gauge extended theories
 - From string theory
 - ◆Etc.

In ~TeV scale we may just see the SM + extra U(1) gauge symmetry



Phenomenology of a new model: Z'



Experimentally tested and models should satisfy constraints

Models can be excluded/confirmed in future experiments

□ For heavy Z' case (TeV scale or higher)

- > Direct test at collider experiments: LHC, CEPC, ILC, etc.
- Indirect test by scattering process:
- Constraint from flavor physics: e.g. flavor dependent Z'

□ For light Z' case (less than GeV scale)

- It can be tested by low energy experiments
- Direct production at lower energy collider: like Bell II experiment etc.

Phenomenology a new model: exotic signals

In a model we often have exotic particles

Some exotic signatures can be induced

For example, to explain muon g-2 we may need lepton flavor dependent interactions

Flavor violating signal can be induced

Tera-Z factory at CEPC is good opportunity to test such signal If flavor violation affect Z-interactions (10¹² Z production)

In this talk, I would like to show such an example

Out line of the talk

- 1. Introduction
- 2. A model with leoptophobic U(1)
- 3. Phenomenology of the model
- 4. Summary

Structure of the model (K.Nagao, TN, H.Okada, arXiv: 2206.15256)

	Q^a_L	u^a_R	d^a_R	L_L^a	e^a_R	N_R^a	N_L^a	E_L^a	E_R^a	H	$arphi_1$	$arphi_2$
$SU(3)_C$	3	3	3	1	1	1	1	1	1	1	1	1
$SU(2)_L$	2	1	1	2	1	1	1	1	1	2	1	1
$U(1)_Y$	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	0	0	-1	-1	$\frac{1}{2}$	0	0
$U(1)_R$	0	1	-1	0	0	1	0	0	-1	1	-1	$-\frac{1}{2}$

New fermions

New scalars

- Gauge anomalies are canceled between the SM fermion and new ones
- Gauge symmetry is broken by scalar VEVs
- ✤ SM leptons are not charged under new U(1)
- We don't have Yukawa interaction $\overline{L}_L e_R H$

2. A model with leptophobic U(1)

$$\begin{split} & \mathsf{Lagrangian of the model} \\ & -\mathcal{L}_{Y} = (y_{\ell})_{ab} \bar{L}_{L}^{a} H E_{R}^{b} + (y_{E})_{aa} \varphi_{1} \bar{E}_{L}^{a} E_{R}^{a} + (m_{Ee})_{ab} \bar{E}_{L}^{a} e_{R}^{b} \\ & + (y_{D})_{ab} \bar{L}_{L}^{a} \tilde{H} N_{R}^{b} + (y_{N})_{aa} \varphi_{1} \bar{N}_{L}^{a} N_{R}^{a} + (M_{N_{L}})_{ab} \bar{N}_{L}^{a} N_{L}^{cb} + \text{h.c.}, \\ & \mathcal{V} = \mu_{1}^{2} |\varphi_{1}|^{2} - \mu_{2}^{2} |\varphi_{2}|^{2} - \mu_{H}^{2} |H|^{2} + \lambda_{H} |H|^{4} + \lambda_{1} |\varphi_{1}|^{4} + \lambda_{2} |\varphi_{2}|^{4} - \mu_{3} (\varphi_{1}^{*} \varphi_{2} \varphi_{2} + h.c.) \\ & + \lambda_{3} |\varphi_{1}|^{2} |H|^{2} + \lambda_{4} |\varphi_{2}|^{2} |H|^{2} + \lambda_{5} |\varphi_{1}|^{2} |\varphi_{2}|^{2}. \end{split}$$

Scalar fields

$$H = \begin{bmatrix} w^+ \\ \frac{w+r+iz}{\sqrt{2}} \end{bmatrix}, \quad \varphi_{1,2} = \frac{v'_{1,2} + r'_{1,2} + iz'_{1,2}}{\sqrt{2}},$$

Neutral scalar can mix: we consider r-r'₁ mixing

- > We take mixing angle θ to be free parameter
- SM Higgs mass: m_h, heavy Higgs mass m_H

$$(r, r_1')^T = O_R(h, H)^T$$

 $, O_R = \begin{bmatrix} c_\theta & s_\theta \\ -s_\theta & c_\theta \end{bmatrix}$

2. A model with leptophobic U(1)

Neutral gauge boson mass

New U(1) and electroweak symmetry breaking by scalar VEVs

Z-Z' mass matrix after symmetry breaking

$$m_{Z_{SM}Z'}^2 \simeq \frac{1}{4} \begin{bmatrix} (g_1^2 + g_2^2)v^2 & -2\sqrt{g_1^2 + g_2^2}g'v^2 \\ -2\sqrt{g_1^2 + g_2^2}g'v^2 & 4g'^2(v^2 + v_2'^2) \end{bmatrix} = m_{Z'}^2 \begin{bmatrix} \epsilon_1^2 & -\epsilon_1\epsilon_2 \\ -\epsilon_1\epsilon_2 & 1 + \epsilon_2^2 \end{bmatrix}$$

Diagonalization:
$$Vm_{Z_{SM}Z'}^2 V^T \equiv \text{Diag}(m_Z^2, m_{Z_R}^2)$$

 $m_Z^2 \approx m_{Z_{SM}}^2 (1 - \epsilon_2^2), \ m_{Z_R}^2 \approx m_{Z'}^2 (1 + \epsilon_1^2 \epsilon_2^2),$
 $V \approx \begin{bmatrix} c_Z & s_Z \\ -s_Z & c_Z \end{bmatrix}, \ \theta_Z = \frac{1}{2} \tan^{-1} \left[\frac{2\epsilon_1 \epsilon_2}{1 + \epsilon_2^2 - \epsilon_1^2} \right].$

Charged lepton mass

$$\begin{pmatrix} \bar{e}_L \\ \bar{E}_L \end{pmatrix}^T \mathcal{M}_{\mathcal{E}} \begin{pmatrix} e_R \\ E_R \end{pmatrix} = \begin{pmatrix} \bar{e}_L \\ \bar{E}_L \end{pmatrix}^T \begin{bmatrix} 0 & m_{eE} \\ m_{Ee} & M_E \end{bmatrix} \begin{pmatrix} e_R \\ E_R \end{pmatrix},$$
$$\mathcal{M}_{\mathcal{E}} \mathcal{M}_{\mathcal{E}}^{\dagger} = \begin{bmatrix} m_{eE} m_{eE}^{\dagger} & m_{eE} M_E \\ M_E m_{eE}^{\dagger} & M_E^2 + m_{Ee} M_{Ee}^{\dagger} \end{bmatrix}, \quad \mathcal{M}_{\mathcal{E}}^{\dagger} \mathcal{M}_{\mathcal{E}} = \begin{bmatrix} m_{Ee}^{\dagger} m_{Ee} & m_{Ee}^{\dagger} M_E \\ M_E m_{eE} & M_E^2 + m_{Ee} M_{Ee}^{\dagger} \end{bmatrix}$$

 $m_{eE} \equiv y_{\ell} v / \sqrt{2}, \ M_E \equiv y_E v' / \sqrt{2}.$

SM chargedd lepton masses are obtained by diagonalizing the mass matrix

$$(e_{L(R)}, E_{L(R)}) \rightarrow \frac{V_{L(R)}}{U_{L(R)}} \ell_{L(R)}$$
Unitary matrix

The mixing between lepton and heavy lepton modifies gauge interaction

Modification of Z-lepton interactions

Due to lepton mixing, we obtain

$$\frac{g_2}{c_W} \left[\left(-\frac{1}{2} \sum_{a=1}^3 V_{L_{ia}}^\dagger V_{L_{aj}} + s_W^2 \delta_{ij} \right) \bar{\ell}_{L_i} \gamma^\mu \ell_{L_j} + s_W^2 \delta_{ij} \bar{\ell}_{R_i} \gamma^\mu \ell_{R_j} \right] Z_\mu$$

Z-interaction associated with left-handed charged lepton is modified

Note: we have flavor violating interaction (lepton FCNC)

It would be tested by Z-factory : Tera-Z/CEPC

2. A model with leptophobic U(1)

Neutrino mass in the model

In our model neutrino mass can be obtain via Yukawa terms

$$(y_D)_{ab}\bar{L}^a_L\tilde{H}N^b_R + (y_N)_{aa}\varphi_1\bar{N}^a_LN^a_R + (M_{N_L})_{ab}\bar{N}^a_LN^{cb}_L + \text{h.c.}$$

After spontaneous symmetry breaking, mass matrix is induced

$$M_{N} = \begin{vmatrix} 0 & m_{D} & 0 \\ m_{D}^{T} & 0 & M \\ 0 & M & M_{N_{L}} \end{vmatrix}$$
In the basis of $(\nu_{L}^{c}, N_{R}, N_{L}^{c})$
$$m_{D} \equiv v y_{D} / \sqrt{2} \text{ and } M \equiv y_{N} v_{1}' / \sqrt{2}.$$

$$\sim m_{\nu} \simeq m_D M^{-1} M_{N_L} (M^T)^{-1} m_D^T.$$

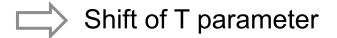
Inverse seesaw mechanism is realized

Out line of the talk

- 1. Introduction
- 2. A model with leoptophobic U(1)
- 3. Phenomenology of the model
- 4. Summary

Explanation of W mass anomaly by Z-Z' mixing

Z-Z' mixing modify relation between Z and W masses



It can be interpreted as shift of W boson mass

CDF II W boson mass can be fitted

Here we consider fitting in terms of T parameter:

 $0.09 \le \Delta T \le 0.14.$

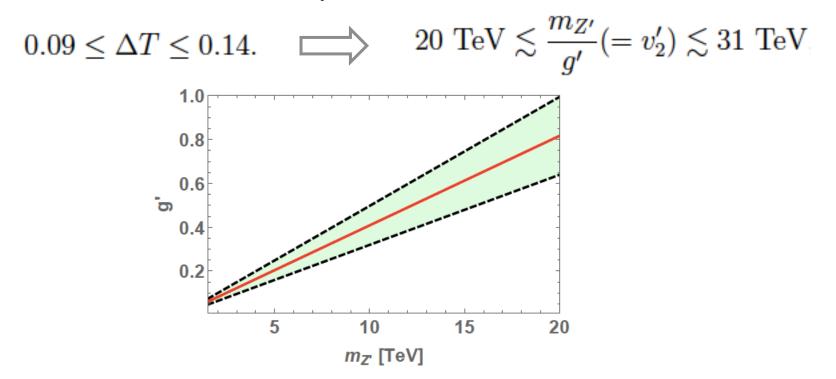
The range of new physics contribution to T for fitting data including CDF II

Explanation of W mass anomaly by Z-Z' mixing

We obtain modification of T-parameter

$$\Delta T = \frac{1}{\alpha_{\rm em}} \frac{m_{Z_{SM}}^2 - m_Z^2}{m_{Z_{SM}}^2} \simeq \frac{\epsilon_2^2}{\alpha_{\rm em}}, \quad \Box \triangleright \quad \Delta T \simeq \frac{v^2}{\alpha_{\rm em}} \frac{g'^2}{m_{Z'}^2} = \frac{4m_W^2}{g_2^2 \alpha_{\rm em}} \frac{g'^2}{m_{Z'}^2}$$

To resolve W bosom mass anomaly



3. Phenomenology of the model

Constraints from Z—II decay

Mixing between lepton and heavy lepton modify Z interaction

$$\frac{g_2}{c_W} \left[\left(-\frac{1}{2} \sum_{a=1}^3 V_{L_{ia}}^\dagger V_{L_{aj}} + s_W^2 \delta_{ij} \right) \bar{\ell}_{L_i} \gamma^\mu \ell_{L_j} + s_W^2 \delta_{ij} \bar{\ell}_{R_i} \gamma^\mu \ell_{R_j} \right] Z_\mu$$

Decay widths of Z to charged lepton pair is

$$\Gamma(Z \to \ell_i \bar{\ell}_j) \simeq \frac{g_2^2}{24\pi c_W^2} m_Z \left[\left| -\frac{1}{2} \sum_{a=1}^3 V_{L_{ia}}^{\dagger} V_{L_{aj}} + s_W^2 \delta_{ij} \right|^2 + s_W^4 \delta_{ij} \right]$$

BRs are deviated from the SM

$$\begin{split} \Delta \mathrm{BR}(Z \to \ell_i \bar{\ell}_j) &= \frac{\Gamma(Z \to \ell_i \bar{\ell}_j) - \Gamma(Z \to \ell_i \bar{\ell}_j)_{SM}}{\Gamma_Z^{\mathrm{tot}}} \quad \text{for } \mathbf{i} = \mathbf{j}, \\ \mathrm{BR}(Z \to \ell_i \bar{\ell}_j) &= \frac{\Gamma(Z \to \ell_i \bar{\ell}_j)}{\Gamma_Z^{\mathrm{tot}}} \quad \text{for } \mathbf{i} \neq \mathbf{j}, \qquad \mathsf{LFV} \ \mathsf{Z} \ \mathsf{decay} \end{split}$$

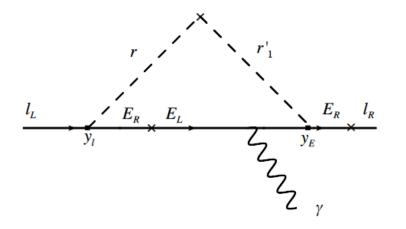
3. Phenomenology of the model

Muon g-2 and LFV processes

Relevant Lagrangian in mass basis

$$\begin{aligned} \mathcal{L}_{LFV} &= (Y_{\alpha\beta}c_{\theta} - \tilde{Y}_{\alpha\beta}s_{\theta})h\bar{\ell}_{\alpha}P_{R}\ell_{\beta} + (Y_{\alpha\beta}s_{\theta} + \tilde{Y}_{\alpha\beta}c_{\theta})H\bar{\ell}_{\alpha}P_{R}\ell_{\beta} + h.c., \\ Y_{\alpha\beta} &\equiv \frac{1}{\sqrt{2}}\sum_{a=1,2,3}\sum_{b=1,2,3}(V_{L}^{\dagger})_{\alpha,a}(y_{\ell})_{ab}(V_{R})_{b+3,\beta}, \\ \tilde{Y}_{\alpha\beta} &\equiv \frac{1}{\sqrt{2}}\sum_{a=1,2,3}\sum_{b=1,2,3}(V_{L}^{\dagger})_{\alpha,a+3}(y_{E})_{aa}(V_{R})_{a+3,\beta}. \end{aligned}$$

One-loop diagram inducing muon g-2 and LFVs $l \rightarrow l' \gamma$



Dominant contribution

Muon g-2 and LFV processes

Analytic formula

$$\begin{split} & \text{BR}(\ell_{\beta} \to \ell_{\alpha} \gamma) \simeq \frac{12\pi^{2} C_{\beta\alpha}}{(4\pi)^{4} m_{\ell_{\beta}}^{2} G_{F}^{2}} (|a_{L_{\alpha\beta}}|^{2} + |a_{R_{\alpha\beta}}|^{2}), \\ & \Delta a_{\mu} \simeq -\frac{m_{\mu}}{(4\pi)^{2}} (a_{L_{22}} + a_{R_{22}}), \\ & a_{L_{\alpha\beta}} \approx -\frac{1}{4} (Y_{\alpha\rho}^{\dagger} c_{\theta} - \tilde{Y}_{\alpha\rho}^{\dagger} s_{\theta}) D_{E_{\rho}} (Y_{\rho\beta}^{\dagger} c_{\theta} - \tilde{Y}_{\rho\beta}^{\dagger} s_{\theta}) F(h_{1}, D_{E_{\rho}}) \\ & -\frac{1}{4} (Y_{\alpha\rho}^{\dagger} s_{\theta} + \tilde{Y}_{\alpha\rho}^{\dagger} c_{\theta}) D_{E_{\rho}} (Y_{\rho\beta}^{\dagger} s_{\theta} + \tilde{Y}_{\rho\beta}^{\dagger} c_{\theta}) F(h_{2}, D_{E_{\rho}}), \\ & a_{R_{\alpha\beta}} \approx -\frac{1}{4} (Y_{\alpha\rho} c_{\theta} - \tilde{Y}_{\alpha\rho} s_{\theta}) D_{E_{\rho}} (Y_{\rho\beta} c_{\theta} - \tilde{Y}_{\rho\beta} s_{\theta}) F(h_{1}, D_{E_{\rho}}) \\ & -\frac{1}{4} (Y_{\alpha\rho} s_{\theta} + \tilde{Y}_{\alpha\rho} c_{\theta}) D_{E_{\rho}} (Y_{\rho\beta} s_{\theta} + \tilde{Y}_{\rho\beta} c_{\theta}) F(h_{2}, D_{E_{\rho}}), \\ & F(m_{h_{i}}, D_{E_{\rho}}) \approx \frac{m_{h_{i}}^{4} - 4m_{h_{i}}^{2} D_{E_{\rho}}^{2} + 3D_{E_{\rho}}^{4} - 2m_{h_{i}}^{2} (m_{h_{i}}^{2} - 2D_{E_{\rho}}^{2}) \ln \left[\frac{m_{h_{i}}^{2}}{D_{E_{\rho}}^{2}}\right], \end{split}$$

 $C_{21} \approx 1, C_{31} \approx 0.1784, C_{32} \approx 0.1736, h_1 \equiv h, h_2 \equiv H$

3. Phenomenology of the model

Numerical analysis

Free parameters: $\{(y_\ell)_{ab}, (y_E)_{aa}, (m_{Ee})_{ab}, \sin\theta, m_H\}$

Searching solution to explain muon g-2

Constraints:

$$\begin{split} & \text{BR}(\mu \to e \gamma) \leq 4.2 \times 10^{-13}, \quad \text{BR}(\tau \to \mu \gamma) \leq 4.4 \times 10^{-8}, \quad \text{BR}(\tau \to e \gamma) \leq 3.3 \times 10^{-8} \\ & \Delta \text{BR}(Z \to e^{\pm} e^{\mp}) < \pm 4.2 \times 10^{-5} \ , \ \Delta \text{BR}(Z \to \mu^{\pm} \mu^{\mp}) < \pm 6.6 \times 10^{-5} \ , \\ & \Delta \text{BR}(Z \to \tau^{\pm} \tau^{\mp}) < \pm 8.3 \times 10^{-5} \ , \ \text{BR}(Z \to e^{\pm} \mu^{\mp}) < 7.5 \times 10^{-7} \ , \\ & \text{BR}(Z \to e^{\pm} \tau^{\mp}) < 9.8 \times 10^{-6} \ , \ \text{BR}(Z \to \mu^{\pm} \tau^{\mp}) < 1.2 \times 10^{-5} \ . \end{split}$$

Benchmark point

Inpu	ıt		Output			
$v_1'/{ m GeV}$	284		$[m_{E_1}, m_{E_2}, m_{E_3}]/{\rm GeV}$	[655, 690, 694]		
$m_H/{ m GeV}$	245		Δa_{μ}	$2.11 imes 10^{-9}$		
$\sin \theta$	0.250		${ m BR}(\mu o e\gamma)$	3.59×10^{-13}		
	[-0.000512, 0.00520, 0.00236]		${ m BR}(au o e \gamma)$	$9.91 imes10^{-11}$		
$[(y_{\ell})_{11}, (y_{\ell})_{12}, (y_{\ell})_{13}]$			$BR(\tau \to \mu \gamma)$	2.22×10^{-8}		
$[(y_{\ell})_{21}, (y_{\ell})_{22}, (y_{\ell})_{23}]$	[-0.000105, 0.000624, 0.0643]	$\left \right $	$\Delta {\rm BR}(Z \to e^{\pm} e^{\mp})$	-1.55×10^{-9}		
$[(y_{\ell})_{31}, (y_{\ell})_{32}, (y_{\ell})_{33}]$	$[0.000148, \ 0.0145, \ 0.0647]$		$\Delta {\rm BR}(Z \to \mu^\pm \mu^\mp)$	$-6.11 imes10^{-7}$		
$[(m_{eE})_{11}, (m_{eE})_{12}, (m_{eE})_{13}]/\text{GeV}$	$[0.674, \ 16.8, \ 5.92]$		$\Delta {\rm BR}(Z \to \tau^\pm \tau^\mp)$	-3.82×10^{-5}		
$[(m_{eE})_{21}, (m_{eE})_{22}, (m_{eE})_{23}]/\text{GeV}$	[-16.2, -46.3, 22.3]		$\Delta {\rm BR}(Z \to e^\pm \mu^\mp)$	6.27×10^{-17}		
$[(m_{eE})_{31}, (m_{eE})_{32}, (m_{eE})_{33}]/\text{GeV}$	[-12.2, 69.5, 19.8]		$\Delta {\rm BR}(Z \to e^\pm \tau^\mp)$	3.83×10^{-14}		
$[(y_E)_{11}, (y_E)_{22}, (y_E)_{33}]$	[-3.26, 3.43, -3.41]		$\Delta {\rm BR}(Z \to \mu^\pm \tau^\mp)$	3.64×10^{-11}		

✤ We can get sizable muon g-2 while satisfying LFV constraints

3. Phenomenology of the model

Z' signature at the LHC

$$pp \rightarrow Z' \rightarrow \overline{E}E, jj, NN$$

Extra fermions decays into SM fermion + Higgs boson

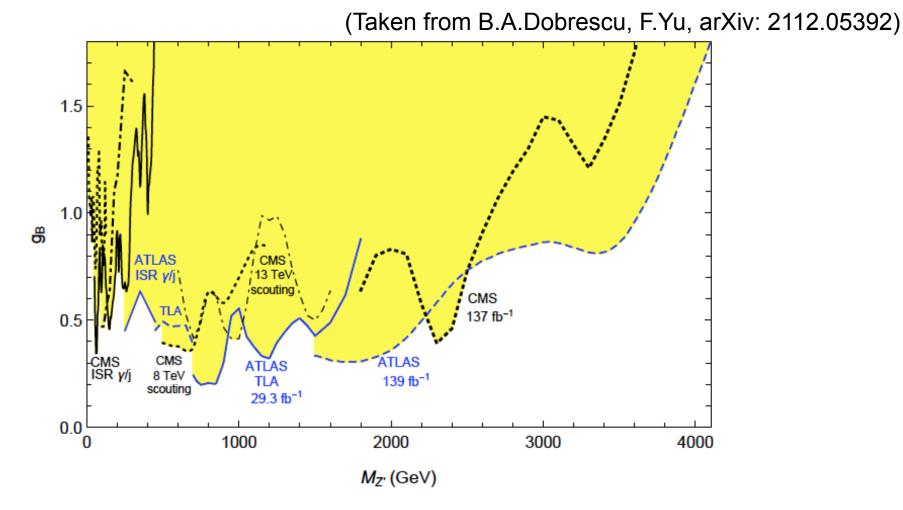
$$\begin{split} E_a \to \ell_i h, & \Gamma(Z' \to f\bar{f}) = \frac{g'^2 N_c}{12\pi} m_{Z'} \sqrt{1 - \frac{4m_f^2}{m_{Z'}^2}} \left(1 - \frac{m_f^2}{m_{Z'}^2}\right) \end{split}$$

Signal of Z' at collider experiments:

Dijet, lepton+Higgs, letpton+W, Z/h + missing energy

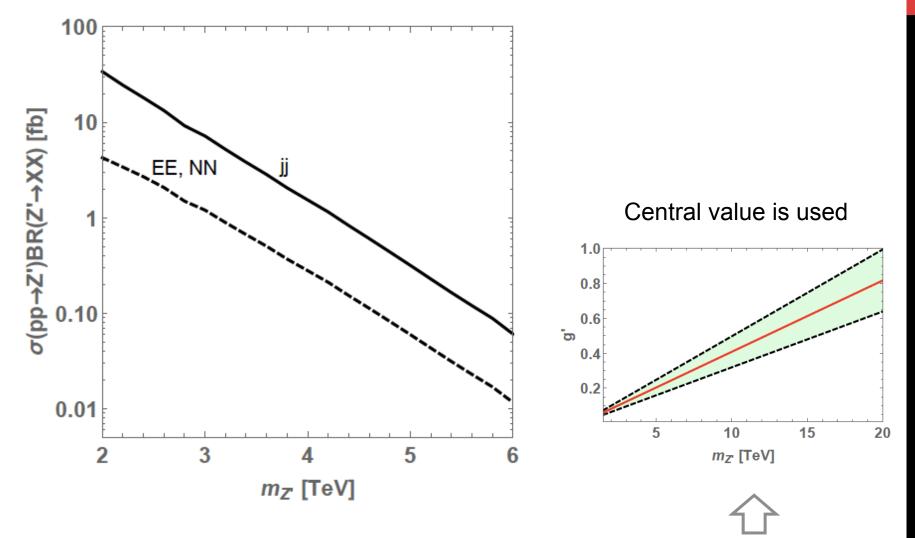
3. Phenomenology of the model

Current constraints (from dijet mode)



Our gauge coupling explaining W boson mass anomaly is below the constraint

Cross sections for Z' signature at the LHC 14 TeV



✓ Gauge coupling is chosen to get best fit value of ΔT for W mass anomaly

Modification of leptonic Z boson decay

Predictions in our benchmark point

$\Delta \mathrm{BR}(Z \to e^{\pm} e^{\mp})$	-1.55×10^{-9}
$\Delta BR(Z \to \mu^{\pm} \mu^{\mp})$	$-6.11 imes10^{-7}$
$\Delta BR(Z \to \tau^{\pm} \tau^{\mp})$	$-3.82 imes 10^{-5}$
$\Delta BR(Z \to e^{\pm} \mu^{\mp})$	6.27×10^{-17}
$\Delta BR(Z \to e^{\pm} \tau^{\mp})$	3.83×10^{-14}
$\Delta BR(Z \to \mu^{\pm} \tau^{\mp})$	3.64×10^{-11}

Prospect of sensitivity at tera-Z factory of CEPC (10¹² Z)

$$\begin{split} & \mathrm{BR}(Z \to \mu e)_{\mathrm{CEPC}} \lesssim 3 \times 10^{-9} \; \left[1/\sqrt{N} \; \mathrm{scaling} \right], \; 7 \times 10^{-12} \; \left[1/N \; \mathrm{scaling} \right], \\ & \mathrm{BR}(Z \to \tau e)_{\mathrm{CEPC}} \lesssim 2 \times 10^{-8} \; \left[1/\sqrt{N} \; \mathrm{scaling} \right], \; 4 \times 10^{-11} \; \left[1/N \; \mathrm{scaling} \right], \\ & \mathrm{BR}(Z \to \tau \mu)_{\mathrm{CEPC}} \lesssim 2 \times 10^{-8} \; \left[1/\sqrt{N} \; \mathrm{scaling} \right], \; 5 \times 10^{-11} \; \left[1/N \; \mathrm{scaling} \right], \end{split}$$

(CEPC-CDR vol.2)

It would be possible to test $\tau\mu$ mode at tera-Z/CEPC

Also precision measurement of T⁺T- could find a deviation

Summary

Extension of the SM with extra U(1) gauge symmetry

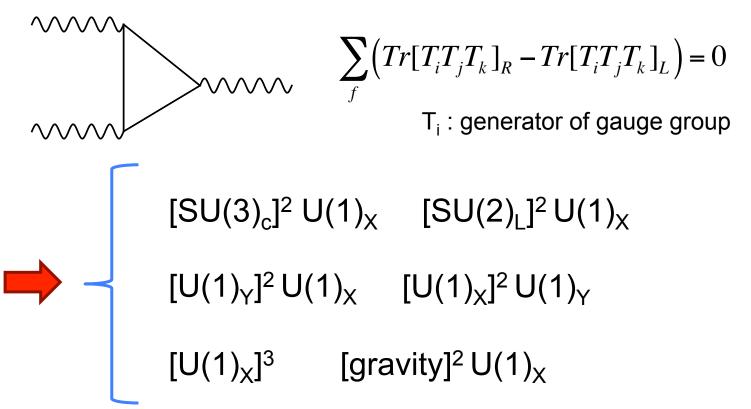
- \checkmark Z' boson from extra U(1)
- \checkmark Z' boson can induce interesting phenomenology
- \checkmark Extra U(1) model may explain experimental anomalies

 \Box A model with leptophobic U(1)

- ✓ Explaining muon g-2
- ✓ CDF W boson anomaly is also explained
- \checkmark LFV and collider physics

Gauge anomaly free conditions

In constructing an extra $U(1)_X$ gauge symmetric model charge assignment of fermion contents should be anomaly free



Conditions in addition to the SM gauge anomaly free conditions