Overview on CEPC Flavour White Paper

Tsz Hong (Anson) Kwok¹

¹Hong Kong University of Science and Technology

The 2022 international workshop on the high energy Circular Electron-Positron Collider 25 Oct 2022

Why Flavour Physics?

 $\mathcal{L}_{SM} \supset i\bar{\psi}D \psi + \bar{\psi}_i y_{ij} \psi_i \phi$

SM Flavour Puzzle 22 free parameters??

SM Flavour Puzzle

SM describes flavour sector very well (so far). But we don't have an explanation.

- Why 3 generations?
- Why masses so different $(m_u/m_t \sim 10^{-5})$?
- Why quark mixing so differently?
- Why lepton universal?

Why Flavour Physics?

$$\mathcal{L} \supset i\bar{\psi} \not\!\!\!D \psi + \bar{\psi}_i y_{ij} \psi_j \phi + \sum_{d \ge 5, i} \frac{c_i}{\Lambda^{d-4}} \mathcal{O}_i^d$$

SM Flavour Puzzle 22 free parameters??

NP Flavour Puzzle (?) Very sensitive to NP scale

Flavour Physics \times New Physics

Flavour observables are VERY sensitive to New Physics.

e^+e^- Collider in the Future?

CEPC (China) FCC-ee (Switzerland)

Nominal CEPC operation scheme.

Operation mode	Z factory	$WW\ {\rm threshold}$	Higgs factory	$t\bar{t}$
$\sqrt{s} \; (\text{GeV})$	91.2	160	240	360
Run time (year)	2	1	10	5
Instantaneous luminosity $(10^{34} \text{cm}^{-2} \text{s}^{-1}, \text{ per IP})$	191.7	26.6	8.3	0.83
Integrated luminosity $(ab^{-1}, 2 \text{ IPs})$	100	6	20	1
Event yields	3×10^{12}	$1 imes 10^8$	$4 imes 10^6$	$5 imes 10^5$

What is good?

White: compared to LHCb; Yellow: compared to B-factories

Estimated *b*-hadron yields

Hadrons	Belle II	LHCb (300 fb^{-1})	CEPC $(10^{12}Z)$
B^0, \bar{B}^0	5.4×10^{10}	$\sim 3 \times 10^{13}$	1.2×10^{11}
B^{\pm}	5.7×10^{10}	$\sim 3 \times 10^{13}$	1.2×10^{11}
B_s, \bar{B}_s	$6.0 imes 10^8$	$\sim 1 \times 10^{13}$	$3.1 imes 10^{10}$
B_c^{\pm}	-	$\sim 2 \times 10^{11}$	1.8×10^8
$\Lambda_b, ar{\Lambda}_b$	-	$\sim 2 \times 10^{13}$	2.5×10^{10}

[Li et al. (2022)]

(Cannot cover all contributions, only present a portion of them) 9/28

CEPC Flavour White Paper [Anticipate to go out this year!!!]

Contents

1	Introduction	1
2	Description of CEPC facility	1
	2.1 Key Collider Features for Flavor Physics	3
	2.2 Key Detector Features for Flavor Physics	3
3	Charged Current Semileptonic and Leptonic b Decays	9
4	Rare/Penguin and Forbidden b Decays	10
	4.1 Dileptonic Modes	10
	4.2 Neutrino Modes	11
	4.3 Radiative Modes	12
	4.4 Lepton Flavor Violating (LFV), Lepton Number Violating(LNV) and Baryon	
	Number Violating (BNV) Decays	12
5	Hadronic b Decays and CP Violation Measurements	13
6	Spectroscopy and Exotics	14
7	Charm Physics	14
8	au Physics	15
9	Flavor Physics at Higher Energies	16
	9.1 Flavor Physics from Z Decays	17
	9.2 Flavor Physics from W Decays	17
	9.3 Flavor Physics from Higgs and Top	18
10	Production of BSM States from Heavy Flavor Decays	18
11	Two Photon and ISR Physics with Heavy Flavors	18
12	2 Summary	19

Fully Neutral Final States [Wang et al. (2022)] [See also Y. Wang's Talk]

• Measuring BR(
$$B^0_{(s)} \rightarrow \pi^0 \pi^0 \rightarrow 4\gamma$$
)
uncert.($B^0 \rightarrow \pi^0 \pi^0 \rightarrow 4\gamma$) ~ 0.45%
uncert.($B^0_s \rightarrow \pi^0 \pi^0 \rightarrow 4\gamma$) ~ 4.5%
[Not observed]

• Measuring
$$BR(B^0_{(s)} \rightarrow \eta^0 \eta^0 \rightarrow 4\gamma)$$

uncert. $(B^0 \rightarrow \eta^0 \eta^0 \rightarrow 4\gamma) \sim 18\%$
[Not observed]
uncert. $(B^0_s \rightarrow \eta^0 \eta^0 \rightarrow 4\gamma) \sim 0.95\%$
[Not observed]

 Benefit from: Cleanness, ECAL resolution, High eff. and purity flavour tagging, ...

Testing charmless 2-body decays, $|V_{ub}|$, hadron physics, ...

CKM elements: $lpha(\phi_2)$ in UT [Wang et al. (2022)] [See also Y. Wang's Talk]

See also: [Charles et al. (2017); Abada et al. (2019); Chang et al. (2017); Monteil and Wilkinson (2021); Hsiao and Geng (2015)]

- Isopsin analysis of $B \to \pi \pi$
- Measuring $\alpha(\phi_2)$ from $B^0 \to \pi^0 \pi^0 \to 4\gamma$ uncert.(α) ~ 0.4°
- Removed mirror solutions!!!

Current determination of α is limited by direct CP asymmetry of $B^0 \to \pi^0 \pi^0$

CKM elements: UT_{sb} angles [Aleksan et al. (2022, 2021)]

See also: [Aaij et al. (2013, 2015); Xiao et al. (2014)]

- Measuring α_s from B̄_s(B_s) → D[±]_sK[∓] uncert.(α_s) ~ 0.4°
- Measuring β_s from $\bar{B}_s(B_s) \rightarrow J/\psi\phi$ uncert. $(\beta_s) \sim 0.035^{\circ}$
- Measuring γ_s from $B^{\pm} \rightarrow \bar{D^0}(D^0)K^{\pm}$ uncert. $(\gamma_s) \sim \mathcal{O}(1^\circ)$

Challenging because UT_{sb} is relatively flat

Charged (Pseudo)Scalar Decays [Zheng et al. (2020); Amhis et al. (2021)]

Benefit from: Knowing PV, E_{cm}, abundant B_c, ...

Testing $|V_{cb}|$, f_{B_c} , LFUV BSM (e.g. 2HDM, Leptoquark)

Neutral Current b ightarrow s au au measurements [Li and Liu (2021); Miralles (2021)]

See also: [Kamenik et al. (2017); Monteil and Wilkinson (2021)]

• Measuring BR($B^0 \rightarrow K^{*0}\tau^+\tau^-$), BR($B_s \rightarrow \phi\tau^+\tau^-$), BR($B^+ \rightarrow K\tau^+\tau^-$)

uncert.~ $\mathcal{O}(10^{-7} - 10^{-6})$ [Not observed]

• Measuring
$$BR(B_s \rightarrow \tau^+ \tau^-)$$

uncert.~ $\mathcal{O}(10^{-5})$ [Not observed]

- Benefit from: Vertexing, Known *E*_{cm}, Clean Env., ...
- Testing 3rd generation FCNC NP (e.g. τ FCNC LFUV)

Ulta-rare (and LFV) decays [Monteil and Wilkinson (2021); Chrzaszcz et al. (2021)]

See also: [Monteil and Wilkinson (2021); Descotes-Genon et al. (2021)]

► Measuring BR($B_s^0 \rightarrow \mu^+\mu^-$), BR($B^0 \rightarrow \mu^+\mu^-$) Limit of BR($B_s^0 \rightarrow \mu^+\mu^-$): ~ $\mathcal{O}(10^{-10})$

 ${\sf BR}(B^0\to\mu^+\mu^-)$ affected by $B^0\to\pi^+\pi^-$ mis-ID

Benefit from: Low mis-ID rate

Potentially also measuring $B^0_s
ightarrow \mu^+ \mu^-$ Lifetime, CP asymmetries

• Measuring LFV decays: $B^0 \rightarrow K^{*0} \tau \mu$

Di-neutrino Final State [Li et al. (2022)]

See also: [Batell et al. (2011); Dror et al. (2017)]

- Measuring BR($B_s \rightarrow \phi \nu \nu$) uncert. ~ $\mathcal{O}(1\%)$
- ► Benefit from: Abundant B_s , E_{cm} , Vertexing, ... \implies Deduce E_B

Useful for extracting CKM elements: Clean theoretical predictions Potentially constraint BSM, signal-hemisphere

which acts as E_{miss} (e.g. Dark Photon, ALP [Ongoing], ...)

17 / 28

Lepton Flavour Universality [See also X.H. Jiang's Talk]

τ Physics [Dam (2019)]

See also: [Dam (2021); Pich (2014); Celis et al. (2014); Calibbi and Signorelli (2018)] Z factory produces $\sim O(10^{10}) \tau^+ \tau^-$ pairs from $Z \to \tau^+ \tau^-$

- Measuring BR($\tau \rightarrow \ell \nu \bar{\nu}$) Improvement: ~ $\mathcal{O}(10^2)$
- Measuring τ lifetime Improvement: $\sim O(10^3)$

Observable	Present	FCC-ee	FCC-ee
	value \pm error	stat.	syst.
m_{τ} (MeV)	1776.86 ± 0.12	0.004	0.1
$\mathcal{B}(\tau \to e\bar{\nu}\nu)$ (%)	17.82 ± 0.05	0.0001	0.003
$\mathcal{B}(\tau \to \mu \bar{\nu} \nu) \ (\%)$	17.39 ± 0.05	0.0001	0.003
$ au_{ au}$ (fs)	290.3 ± 0.5	0.001	0.04

• Measuring BR($\tau \rightarrow 3\mu$) and BR($\tau \rightarrow \mu\gamma$) Improvement: ~ $O(10 - 10^2)$

Decay	Present bound	FCC-ee sensitivity
$Z \rightarrow \mu e$	0.75×10^{-6}	$10^{-10} - 10^{-8}$
$Z \rightarrow \tau \mu$	12×10^{-6}	10^{-9}
$\mathrm{Z} \to \tau \mathrm{e}$	$9.8 imes 10^{-6}$	10^{-9}
$\tau ightarrow \mu \gamma$	$4.4 imes 10^{-8}$	2×10^{-9}
$ au ightarrow 3 \mu$	$2.1 imes 10^{-8}$	10^{-10}

Flavour Physics From Z Decays [Calibbi et al. (2021, 2022); Dam (2019)]

• Measuring BR(
$$Z \rightarrow \ell \ell'$$
) with $(\ell \neq \ell')$
Limits ~ $\mathcal{O}(10^{-8} - 10^{-10})$

Z decays can well constrain operators involve top quarks.

Other Opportunities

Exotic Hadrons [See also F.K. Guo's Talk]:

From *b*-hadron decays/ Direct $Z \rightarrow b\bar{b}, c\bar{c}$ $BR(Z \rightarrow T^{\{cc\}}_{[\bar{q}\bar{q}']} + X) \sim \mathcal{O}(10^{-6}), BR(Z \rightarrow \Xi^+_{cc} + X) \sim 1 \times 10^{-5},$ $BR(Z \rightarrow \Sigma^+_{cc} + X) \sim 5 \times 10^{-5} \text{ [Qin et al. (2021)]}$

Charm-Physics:

- BR $(Z
 ightarrow c ar{c}) \sim 12\%$ v.s. BR $(Z
 ightarrow b ar{b}) \sim 15\%$
- Similar to those of b-physics (e.g. CKM, FCNC, ...) [Bause et al. (2021)]

W-Decays ($e^+e^-
ightarrow W^+W^-$) at $\sqrt{s} \sim 160$ GeV:

Direct measurement of CKM elements

 $|V_{cb}|$ based on flavour tagging, $|V_{cs}|$ [Charles et al. (2020)], ...

Similar to those of Z decays

Flavour Physics in Higgs & Top ??? [König and Neubert (2015); Shi and Zhang (2019)]

Reference I

- Aaij, R. et al. (2013). Observations of $B_s^0 \rightarrow \psi(2S)\eta$ and $B_{(s)}^0 \rightarrow \psi(2S)\pi^+\pi^-$ decays. *Nucl. Phys. B*, 871:403–419.
- Aaij, R. et al. (2015). Study of $\eta \eta'$ mixing from measurement of $B^0_{(s)} \rightarrow J/\psi \eta^{(\prime)}$ decay rates. *JHEP*, 01:024.
- Abada, A. et al. (2019). FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1. Eur. Phys. J. C, 79(6):474.
- Aleksan, R., Oliver, L., and Perez, E. (2021). Study of CP violation in B^{\pm} decays to $\overline{D^0}(D^0)K^{\pm}$ at FCCee.
- Aleksan, R., Oliver, L., and Perez, E. (2022). CP violation and determination of the bs flat unitarity triangle at an FCC-ee. *Phys. Rev. D*, 105(5):053008.
- Amhis, Y., Hartmann, M., Helsens, C., Hill, D., and Sumensari, O. (2021). Prospects for $B_c^+ \rightarrow \tau^+ \nu_{\tau}$ at FCC-ee.

Reference II

- Batell, B., Pospelov, M., and Ritz, A. (2011). Multi-lepton Signatures of a Hidden Sector in Rare B Decays. *Phys. Rev. D*, 83:054005.
- Bause, R., Gisbert, H., Golz, M., and Hiller, G. (2021). Rare charm $c \rightarrow u \nu \bar{\nu}$ dineutrino null tests for e^+e^- machines. *Phys. Rev. D*, 103(1):015033.
- Calibbi, L., Li, T., Marcano, X., and Schmidt, M. A. (2022). Indirect constraints on lepton-flavour-violating quarkonium decays.
- Calibbi, L., Marcano, X., and Roy, J. (2021). Z lepton flavour violation as a probe for new physics at future e^+e^- colliders.
- Calibbi, L. and Signorelli, G. (2018). Charged Lepton Flavour Violation: An Experimental and Theoretical Introduction. *Riv. Nuovo Cim.*, 41(2):71–174.

Reference III

Celis, A., Cirigliano, V., and Passemar, E. (2014). Model-discriminating power of lepton flavor violating τ decays. *Phys. Rev. D*, 89(9):095014.

- Chang, P., Chen, K.-F., and Hou, W.-S. (2017). Flavor Physics and CP Violation. *Prog. Part. Nucl. Phys.*, 97:261–311.
- Charles, J., Deschamps, O., Descotes-Genon, S., and Niess, V. (2017). Isospin analysis of charmless B-meson decays. *Eur. Phys. J. C*, 77(8):574.
- Charles, J., Descotes-Genon, S., Ligeti, Z., Monteil, S., Papucci, M., Trabelsi, K., and Vale Silva, L. (2020). New physics in B meson mixing: future sensitivity and limitations. *Phys. Rev. D*, 102(5):056023.
- Chrzaszcz, M., Suarez, R. G., and Monteil, S. (2021). Hunt for rare processes and long-lived particles at FCC-ee. *Eur. Phys. J. Plus*, 136(10):1056.

Reference IV

- Dam, M. (2019). Tau-lepton Physics at the FCC-ee circular e⁺e⁻ Collider. *SciPost Phys. Proc.*, 1:041.
- Dam, M. (2021). The \texttau challenge at FCC-ee.
- Descotes-Genon, S., Novoa-Brunet, M., and Vos, K. K. (2021). The time-dependent angular analysis of $B_d \rightarrow K_S \ell \ell$, a new benchmark for new physics. *JHEP*, 02:129.
- Dror, J. A., Lasenby, R., and Pospelov, M. (2017). Dark forces coupled to nonconserved currents. *Phys. Rev. D*, 96(7):075036.
- Ellis, R. K. et al. (2019). Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020.
- Hsiao, Y. K. and Geng, C. Q. (2015). Direct CP violation in Λ_b decays. *Phys. Rev. D*, 91(11):116007.
- Kamenik, J. F., Monteil, S., Semkiv, A., and Silva, L. V. (2017). Lepton polarization asymmetries in rare semi-tauonic $b \rightarrow s$ exclusive decays at FCC-*ee*. *Eur. Phys. J. C*, 77(10):701.

Reference V

- König, M. and Neubert, M. (2015). Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings. *JHEP*, 08:012.
- Li, L. and Liu, T. (2021). b \rightarrow s $\tau^+\tau$ physics at future Z factories. JHEP, 06:064.
- Li, L., Ruan, M., Wang, Y., and Wang, Y. (2022). The analysis of $B_s \to \phi \nu \bar{\nu}$.
- Miralles, T. (2021). Study of $B^0 \to K^{*0} \tau^+ \tau$ at FCC-ee.
- Monteil, S. and Wilkinson, G. (2021). Heavy-quark opportunities and challenges at FCC-ee. *Eur. Phys. J. Plus*, 136(8):837.
- Pich, A. (2014). Precision Tau Physics. *Prog. Part. Nucl. Phys.*, 75:41–85.
- Qin, Q., Shen, Y.-F., and Yu, F.-S. (2021). Discovery potentials of double-charm tetraquarks. *Chin. Phys. C*, 45(10):103106.

Reference VI

- Shi, L. and Zhang, C. (2019). Probing the top quark flavor-changing couplings at CEPC. *Chin. Phys. C*, 43(11):113104.
- Wang, Y., Descotes-Genon, S., Deschamps, O., Li, L., Chen, S., Zhu, Y., and Ruan, M. (2022). Prospects for $B^0_{(s)} \rightarrow \pi^0 \pi^0$ and $B^0_{(s)} \rightarrow \eta \eta$ modes and corresponding *CP* asymmetries at Tera-*Z*. Xiao, Z.-J., Li, Y., Lin, D.-T., Fan, Y.-Y., and Ma, A.-J. (2014). $\overline{b}^0_s \rightarrow (\pi^0 \eta^{(\prime)}, \eta^{(\prime)} \eta^{(\prime)})$ decays and the effects of next-to-leading order contributions in the perturbative qcd approach. *Phys. Rev. D*, 90:114028.
- Zheng, T., Xu, J., Cao, L., Yu, D., Wang, W., Prell, S., Cheung, Y.-K. E., and Ruan, M. (2020). Analysis of $B_c \rightarrow \tau \nu_{\tau}$ at CEPC.