Phase-2 Upgrade Of Level-1 Trigger

Vladimir Rekovic Vinca Institute, University of Belgrade

on behalf of the CMS Collaborations

p-p collisions in HL-LHC

- Interaction region with Gaussian spread 45 mm along beam axis
- Average number of collisions : $<\mu>200$
 - Average interaction density: 1.8 collisions/mm

Major challenge for tracking detectors in ATLAS & CMS

- Efficiently reconstruct charged particles from primary interactions -> up to 0(10k) tracks / bunch crossing
 - Correctly assign them to production vertices

Recently updated schedule

HL-LHC

The Phase II (HL-LHC) project established in 2010, is already more than half-way through: Inst. Luminosity up to 7.5e34 (updated projection for Integrated 4000 fb-1) Energy: 14 TeV or more (discussion ongoing on availability of the machine) Filling schemes considered: similar to previous experience (8b4e, 48b etc.)

CEPC2022, Phase-2 Upgrade Level-1 Trigger, V.Rekovic, 27Oct2022

The Phase-2 Upgrade of the CMS Level-1 Trigger Technical Design Report

-Trigger HLT/DAQ

https://cds.cern.ch/record/2714892 https://cds.cern.ch/record/2759072

- Tracks in L1-Trigger at 40 MHz
- PFlow selection 750 kHz L1 output
- HLT output 7.5 kHz
- 40 MHz data scouting

Beam Radiation Instr. and Luminosity http://cds.cern.ch/record/2759074

Bunch-by-bunch luminosity measurement 1% offline, 2% online

Barrel Calorimeters

https://cds.cern.ch/record/2283187

- ECAL crystal granularity readout at 40 MHz with precise timing for e/γ at 30 GeV
- ECAL and HCAL new Back-End boards

Muon systems

https://cds.cern.ch/record/2283189

- DT & CSC new FE/BE readout
- RPC back-end electronics
- New GEM/RPC 1.6 < η < 2.4
- Extended coverage to $\eta \simeq 3$

Calorimeter Endcap

https://cds.cern.ch/record/2293646

- 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS

Tracker https://cds.cern.ch/record/2272264

- Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to $\eta \simeq 3.8$

MIP Timing Detector

https://cds.cern.ch/record/2667167

Precision timing with:

- **Barrel layer: Crystals + SiPMs**
- **Endcap layer: Low Gain Avalanche Diodes**

CMS Endcap Calorimeter Technical Design Report

CMS Tracker Technical Design Report

for the CMS Phase-2 Upgrade Technical Design Report

The Phase-2 Upgrade of the CMS Muon Detectors TECHNICAL DESIGN REPORT

- SM Precision measurement: Higgs, PDFs, QCD,
- New Physics: DM, SUSY, BSM, extra dim.

More sensitive to BSM signatures:

Displaced-objects, Disappearing tracks, Emerging jets, HSCP, ...

Major challenge for tracking detectors in HL-LHC experiments, CMS Efficiently reconstruct charged particles from primary interactions Correctly assign them to production vertices Need upgraded detectors for Phase-2.

Reasons for HL-LHC

- Negative effects on: \bullet

 - separation of electrons from background jets
 - calculation of global event quantities like E^{miss}
 - jet energy resolution
 - separation of *b*-jets from light jets

- Approach to solving problem: Use of tracking to identify a primary vertex and associate reconstructed objects.
- **Objective:** exclude from relevant quantities charged particles not associated with hard interaction.
 - -> build time-of-flight detector to assign time tag to particle signatures
 - -> use tracking in the trigger and higher detector granularity

Main challenge - effects of PU

CEPC2022, Phase-2 Upgrade Level-1 Trigger, V.Rekovic, 27Oct2022

L1_SingleMu22_EMTF Fills 7334 and 7358

CMS detector Peak $\langle PU \rangle$

L1 accept rate (maximum) Event Size Event Network throughput Event Network buffer (60 seconds HLT accept rate HLT computing power ^c Storage throughput Storage capacity needed (1 day)

	LHC	HL-LHC Phase-2	
	Run-2		
	60	140	200
	100 kHz	500 kHz	750 kHz
s)	2.0 MB ^a	5.7 MB ^b	7.4 MB
	1.6 Tb/s	23 Tb/s	44 Tb/s
	12 TB	171 TB	333 TB
	1 kHz	5 kHz	7.5 kHz
	0.5 MHS06	4.5 MHS06	9.2 MHS06
	2.5 GB/s	31 GB/s	61 GB/s
	0.2 PB	2.7 PB	5.3 PB

- <u>Level-1</u>: Complete change of electronics
 - Replace µTCA with custom ATCA based boards, with
 - Virtex Ultrascale FPGAs and high speed optical links
 - Architecture organized in layers
 - Calo, Tracker, Muon,
 - GlobalCalo, Global Tracker, GlobalMuon, Correlator,
 - **Global Trigger**

CMS - Trigger for Phase-2

- **DAQ/HLT:** Complete change of electronics
- Optical links from FE to BE
 - Custom ATCA based DAQ & TCDS Hub aggregates data from BE
 - Transfer data to surface via comercial optical link 100 Gb/s
 - Full event building and HLT
 - Output rate 7.5 kHz, @ 7.4 MB/event

×	ľ	3
ŝ	2	5
\supset	2	ς
_	-	7
	-	~

1	ŕ	h	١
1	ί,		1
ł	į.	ŕ	١
1	Ų	١,	ļ
1	-	•	6
			J

CMS Phase II Level-1 Trigger system intends to perform precise physics selection using a global event reconstruction based on enhanced granularity already at hardware level.

- Exploit
 - presence of tracks at L1T and higher detector granularity
 - larger latency and new electronics allows for more complex reconstruction algorithms
- Move as much of HLT and Offline reconstruction to HW to improve efficiency and purity @ L1
 - Match Tracks to Muon and Calorimetry objects (improved resolution and lower rate x 10)
 - Reconstruct Vertices
 - Use Particle Flow (best use of all detectors)

CMS - L1 Trigger

TP	Improved triggering with full de Trigger decision includes calorin	tector view: neters,
Local	muons & tracker (~5us latency)	
Global	→ <u>L1Rate</u> = 750 kHz	
	→ Latency = 12.5 us latency	
	→ <u>Bandwidth</u> : ~ 50 Tb/s	
	(1.8 Tb/s in Phas	el)
PF	Processing step	Time (µs)
	Input data received by CT	5
	Trigger objects received by GT	7.5
	L1A received by TCDS	8.5
GT	L1A received by front-ends	9.5

Low material budget and high granularity w/ > 1 billion silicon pixels and strips

<u>Outer Tracker | n | < 2.4: In Level-1 Trigger</u>

- <u>modules pixel-strip (PS):</u>
- pixel (1.5 mm x 100 µm),
- strip (2.4 cm x 100 µm)
- tilted in Barrel (hermetic coverage)
- 170M macro-pixels in 25 m²

- <u>modules strip-strip (2S)</u>:
- strip (5 cm x 90 µm)

L1 Trigger Each module consists of 2 closely spaced sensors (~mm) => allows for on-module pT measurement

CMS Phase2 Upgraded Tracker

Inner Tracker - not in L1 Trigger:

- Pixels w/ extended coverage up to $|\eta| < 4.0$
- 6x granularity of Phase-1 pixel (~1B chanels)
- improved material budget and radiation tolerance

- OT designed to provide tracks (pT > 2 GeV) at 40 MHz to L1 trigger
- Pattern Recognition (PR) and Fitting both done in FPGAs on ATCA architecture
- Algorithm based on lacksquare
 - 1. Hough Transform
 - PR: line identification (Hough) and stub grouping
 - Fit: Kalman Filter
 - 2. Tracklet road search
 - PR: 2-initial stubs project to layers/discs to find matching stubs
 - Fit: linearized x² fit to matched stubs, update track params

CMS L1 Track Finder with OT

CMS-TDR-014

CMS-TDR-021

Two L1 track trigger track reconstruction algos

- Baseline: for prompt tracks
- Extended: for displaced tracking

- ML technics successfully exploited in LHC experiments in Run2:
 - HLT and Offline
 - In a few cases in hardware L1Trigger (eg. BDT in EndCap FPGAs)
- New developments in the FPGA technology provide considerable boost in computing resources
 - LUTS, FFs, BRAM
 - Allows for O(10k) parallel operations
 - Clocks O(200-300 MHz)
- Ideal for more advanced ML, Neural Networks for example, to be moved from HLT to L1T - Calculate in parallel output of each neuron in a layer,

$$\boldsymbol{x}_{\boldsymbol{m}} = \boldsymbol{g}_{\boldsymbol{m}} \left(\boldsymbol{W}_{\boldsymbol{m},\boldsymbol{m}-1} \boldsymbol{x}_{\boldsymbol{m}-1} + \boldsymbol{b}_{\boldsymbol{m}} \right)$$

1 layer per clock.

• New tools available:

hls 4 ml

- Software package based on High Level Synthesis developed for building ML models in FPGAs
 - "Fast inference of deep neural networks in FPGAs for particle physics" https://arxiv.org/abs/1804.06913
- Example: DNN classifier for jet-substructure model
 - signal efficiency versus misidentification rate for quark, gluon, W boson, Z boson, and top quark jet identif
 - latency ~100ns
- Output: HLS package
 - drastic decrease firmware development time !!

Upgrade Detector

- DT and RPC: new readout, improved $\sigma(z)$, $\sigma(t) \sim 1$ ns
- CSC in forward: new readout at high bandwidth
- New stations in forward stations GEM, iRPC at $|\eta| \leq 2$. and ME0 at $2.4 \le |\eta| \le 2.9$

CMS - L1 Muon Trigger Phase-2 Upgrade

Upgraded trigger Muon L1T

- Improved input with additional η coverage, •
 - For higher occupancy, Improved bandwidth and redundancy
- Improved Muon tracking (Barrel, Overlap, EndCap) •
 - New technics in StandAlone Muon Track Finder (µ-track)
- New Global Muon Trigger w/ presence of Tracker Tracks: •
 - Tracker Trigger Track + µ-track or µ-hit
 - Topological triggers with correlations

L1 Muon Trigger µ track

from the primary vertex, (e.g. decays of dark photons)

With improved computing power in FPGA, using only muon detector information, can trigger on muons not originating

- Match Tracker L1 Tracks with μ -track (TkMu) or μ -hit (TkMuStub),
 - Matching with L1 Tracker Tracks significantly improves the pT resolution
 - That of a track trigger track (1-5 %) across pseudorapidity
 - Matching with μ -hit (any station) recovers inefficiencies in gaps b/w chambers

Barrel: SA, TkMu, TkMuStub

Global Muon Trigger: Tracker Track + µ-info

EndCap: SA, TkMu, TkMuStub

ECAL : maintain PbWO4 crystal granularity readout (Avalanche PhotoDiodes) at 40 MHz in high PU conditions, and replace front-end electronics, 30 ps resolution for 30 GeV e/γ :

160 MHz sampling against spikes (hadron interactions within APD volume)

- HGCAL: high granularity, EM and Hadronic parts
- Level-1 Trigger e/γ
- EG cluster energy resolution improved w/ ML exploiting high granularity
- To control rates of electrons match clusters to TrackTrigger Tracks to control rates of electrons

CMS - L1 $e/\gamma/\tau$ Trigger

- Level-1 Trigger τ
- Exploit high granularity,
- Algorithm Track+Strip

Showing Barrel only.

CMS - Level-1 Trigger with Endcap calorimeter

- HGCAL: 4D shower topology with timing resolution ~50 ps
 - <u>electromagnetic section</u>: 28 layers Silicon/W-Pb (25 X0 1.7 λ)
 - <u>hadronic section</u>: 22 layers Si and mixed Si-Scintillators in stainless still absorber (8.1 λ)
 - 8' sillicon sensors will be hexagonal, divided with 3-fold symmetry into hexagonal cells.

New endcap calorimeter will identify energy clusters with excellent spatial resolution and send them to the L1 trigger. by eye throughout

Designed to see showers - perfect for ParticleFlow

- Schematic diagram of the algorithm flow (left to right) \bullet
 - Correlator Layer 1: Builds PF candidates and PUPPI weights
 - Correlator Layer 2: Builds PF and PUPPI MET, Jets, Taus, e/γ , Muons

Level-1 Correlator Trigger (Particle Flow + PUPPI)

CMS Level1 Trigger - Vertexing and PUPPI

Particle flow reconstruction @ Level1: With the addition of tracking information, Level-1 algorithms can match the performance of HLT/Offline algorithms Benefiting from the Enhanced particle separation and identification -> improved response/spacial resolution <u>Approach used here</u> Combine PFlow & PileUP per particle Identification (PUPPI)

Make selection on objects built in Muon Global Trigger, Calo Global Trigger, Correlator Layer2

Retain object thresholds of Run1/2, made possible mostly due to use Level-1 Tracker tracks in GMT, GCT, GTT, Correlator

ullet

Retain object thresholds of Run1/2, with rate below 500 kHz @ PU 200 (with accounting for 30% of uncertainty)

	Offline	Rate	Additional	Objects
L1 Trigger seeds	Threshold(s)	$\langle PU \rangle = 200$	Requirement(s)	plateau
	at 90% or 95% (50%)			efficiency
	[GeV]	[kHz]	[cm, GeV]	[%]
Single/Double/Triple Lepton	n (electron, muon) seed	s		
Single TkMuon	22	12	$ \eta < 2.4$	95
Double TkMuon	15,7	1	$ \eta < 2.4, \Delta z < 1$	95
Triple TkMuon	5,3,3	16	$ \eta < 2.4, \Delta z < 1$	95
Single TkElectron	36	24	$ \eta < 2.4$	93
Single TkIsoElectron	28	28	$ \eta < 2.4$	93
TkIsoElectron-StaEG	22, 12	36	$ \eta < 2.4$	93 <i>,</i> 99
Double TkElectron	25, 12	4	$ \eta < 2.4$	93
Single StaEG	51	25	$ \eta < 2.4$	99
Double StaEG	37,24	5	$ \eta < 2.4$	99
Photon seeds				
Single TkIsoPhoton	36	43	$ \eta < 2.4$	97
Double TkIsoPhoton	22, 12	50	$ \eta < 2.4$	97
Taus seeds				
Single CaloTau	150(119)	21	$ \eta < 2.1$	99
Double CaloTau	90,90(69,69)	25	$ \eta < 2.1, \Delta R > 0.5$	99
Double PuppiTau	52,52(36,36)	7	$ \eta < 2.1, \Delta R > 0.5$	90
Hadronic seeds (jets, H _T)	-	-	-	
Single PuppiJet	180	70	$ \eta < 2.4$	100
Double PuppiJet	112,112	71	$ \eta < 2.4, \Delta \eta < 1.6$	100
PuppiH _T	450(377)	11	jets: $ \eta < 2.4, p_{\rm T} > 30$	100
QuadPuppiJets-PuppiH _T	70,55,40,40,400(328)	9	jets: $ \eta < 2.4, p_{\rm T} > 30$	100,100
E ^{miss} seeds				
PuppiE ^{miss}	200(128)	18		100
Cross Lepton seeds				
TkMuon-TkIsoElectron	7,20	1	$ \eta < 2.4, \Delta z < 1$	95, 93
TkMuon-TkElectron	7,23	3	$ \eta < 2.4, \Delta z < 1$	95, 93
TkElectron-TkMuon	10,20	1	$ \eta < 2.4, \Delta z < 1$	93, 95
TkMuon-DoubleTkElectron	6,17,17	0.1	$ \eta < 2.4, \Delta z < 1$	95, 93
DoubleTkMuon-TkElectron	5,5,9	4	$ \eta < 2.4, \Delta z < 1$	95, 93
PuppiTau-TkMuon	36(27),18	2	$ \eta < 2.1, \Delta z < 1$	90, 95
TkIsoElectron-PuppiTau	22,39(29)	13	$ \eta < 2.1, \Delta z < 1$	93, 90
			$\Delta R > 0.3$	

Using objects built in Muon Global Trigger, Calo Global Trigger, Correlator Layer1, devised a Level-1 Trigger physics menu

	Offline	Rate	Additional	Objects
L1 Trigger seeds	Threshold(s)	$\langle PU \rangle = 200$ Requirement(s)		plateau
	at 90% or 95% (50%)			efficiency
	[GeV]	[kHz]	[cm, GeV]	[%]
Cross Hadronic-Lepton seeds	;			
TkMuon-PuppiH _T	6,320(250)	4	$ \eta < 2.4, \Delta z < 1$	95,100
TkMuon-DoublePuppiJet	12,40,40	10	$ \eta < 2.4, \Delta R_{j\mu} < 0.4,$	95,100
			$\Delta\eta_{jj} < 1.6,\Delta z < 1$	
TkMuon-PuppiJet-	3,100,120(55)	14	$ \eta < 1.5, \eta < 2.4,$	95,100,
PuppiE ^{miss}			$\Delta z < 1$	100
DoubleTkMuon-PuppiJet-	3,3,60,130(64)	4	$ \eta <$ 2.4, $\Delta z <$ 1	95,100,
PuppiE ^{miss}				100
DoubleTkMuon-Puppi $H_{\rm T}$	3,3,300(231)	2	$ \eta <$ 2.4, $\Delta z <$ 1	95,100
DoubleTkElectron-Puppi H_{T}	10,10,400(328)	0.9	$ \eta <$ 2.4, $\Delta z <$ 1	93,100
TkIsoElectron-Puppi $H_{\rm T}$	26,190(124)	9	$ \eta <$ 2.4, $\Delta z <$ 1	93,100
TkElectron-PuppiJet	28,40	34	$ \eta < 2.1, \eta < 2.4,$	93,100
			$\Delta R > 0.3, \Delta z < 1$	
PuppiTau-PuppiE _T ^{miss}	55(38),190(118)	4	$ \eta < 2.1$	90,100
VBF seeds				
Double PuppiJets	160,35	40	$ \eta < 5, m_{jj} > 620$	100
B-physics seeds				
Double TkMuon	2,2	12	$ \eta < 1.5, \Delta R < 1.4,$	95
			$q1 * q2 < 0, \Delta z < 1$	
Double TkMuon	4,4	21	$ \eta < 2.4, \Delta R < 1.2$	95
			$q1*q2 < 0, \Delta z < 1$	
Double TkMuon	4.5,4	10	$ \eta < 2.0, 7 < m_{\mu\mu} < 18,$	95
			$q1 * q2 < 0, \Delta z < 1$	
Triple TkMuon	5,3,2	7	$0 < m_{\mu 5\mu 3,q1*q2<0} < 9$	95
			$ \eta < 2.4, \Delta z < 1$	
Triple TkMuon	5,3,2.5	6	$5 < m_{\mu 5 \mu 2.5, q1 * q2 < 0} < 17$	95
			$ \eta < 2.4, \Delta z < 1$	
Rate for above Trigger seeds 346				
Total Level-1 Menu Rate (+30%) 450				

- - even for the case of the most drastic (uniform) bunch-to-bunch PU variation

Stability of the Rate with PU variation between HL-LHC bunches (CMS-TDR-021)

L1 trigger rate of 347 kHz at <PU> = 200 is stable with PU bunch-to-bunch variation of about 25% and increases by ~10 kHz

- Presence of Tracker Trigger Tracks allows for a more precise reconstruction
 - low mass resonances decaying to charged particles with an acceptable Level-1 trigger rate

LFV: Tau-> 3µ with L1 Muon Jets in GMT

	Online	Rate	Additional		
	Threshold(s)	$\langle PU \rangle = 200$	Requirement(s)		
	(* for Offline)		_		
	[GeV]	[kHz]	[cm, GeV, ns]		
	36 *	12	$2.4 < \eta < 3.0$		
	2, 2, 0.5	27	$ \eta < 2.4, \Delta R < 1, \Delta z < 1, m_{\mu-jet} < 3$		
	12	15	$ \eta < 2.4, \Delta z < 0.6, 5.0 < m_{B^0_s} < 5.8$		
	22	14	$ \eta < 0.9 \ (1.2 < \eta < 2.4), d_{xy} > 75(20)$		
L	20, 15	2	$ \eta < 0.9 \; (1.2 < \eta < 2.4)$		
	248(153) *	20	jets: $ \eta < 2.0, p_{\rm T} > 5$		
	40	20	$ \eta < 1.44, \Delta t > 1$		
ze	ers 110 kHz				

- - Desirable to detect any data inconsistencies as fast as possible
 - Achieved by receiving both the inputs and outputs of the GT, the 40 MHz \rightarrow Scouting System

Scouting

During the data taking Global Trigger is reprogrammed several times per year, as the operations and physics need evolve

- Intermediate data from the different trigger processors will be read out and processed at the Level-1 accept rate by the DAQ system for triggered events, similar way as detector data.
- Scouting system represents a second, parallel readout chain running as an "opportunistic experiment", processing copies of the output streams feeding the different components of the Level-1 at 40 MHz

HW baseline eight-optical-input halfsize PCIe board with a modest FPGA, supporting four optical links with 25 Gb/s

- ATCA boards hosting powerful Xilinx Ultrascale+ FPGAs with high I/O are designed
- Prototypes vailable in different flavors for Phase-2 L1-Trigger (optics Firefly or QSFP)
 - "X2O" for OMTF, EMTF, GMT (moving from Ocean in TDR)
 - BMTL1
 - "Serenity" for GCT, Correlator, GT
 - "APx" (GCT)

Excellent results of optics tests

Hardware demonstrators

Serenity

APx

Ongoing Slice Test of FW with hardware connecting multiple boards of different flavors.

Progressing well towards electronics readiness review in Q1/2 2023.

,	1
atched Muon-Trk ($\Delta pT < 0.5$)	MUs
ched EmCalo (emcalo > Σ trk pT)	PHO+ELEs
d EmCalo-Trk ($\Delta pT < error$)	ELES
۱ د	
5 I	1
i i i	
natched Cale (cale > 5 trk pT)	
$\frac{1}{1} \frac{1}{1} \frac{1}$	
tched Calo-Trk (ΔpT & ΔR < max)	CHs
matched Trk (pT > min)	CHs 4

