

The 13th International Workshop on e+e- collisions from Phi to Psi

Current Status of Muon g-2 Experiment at Fermilab

Bingzhi Li Shanghai Jiao Tong University

2022.08.15

饮水思源•爱国荣校

- 1. Introduction & Motivation
- 2. Overview of the Fermilab Muon g-2 Experiment
- 3. Run1 Result: Measuring ω_a and $\widetilde{\omega}'_p$
- 4. Challenges and Improvements Beyond Run1
- 5. Outlook

Introduction & Motivation

- The muon is the secondary generation lepton
- ~200 times heavier than the electron, ~40,000 times more sensitive
- $\mu = g \frac{e}{2m} S$, with g=2 given by Dirac for spin $\frac{1}{2}$ particles
- Existence of the magnetic "anomaly"

>Known as Schwinger term: $a_l^{QED,1loop} = \frac{\alpha}{2\pi} \approx 0.00116$

• Contributions to a_{μ} come from QED, EW and Hadronic

$$a_{\mu} = \frac{g-2}{2} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{HVP} + a_{\mu}^{HLbP}$$

Comparison between experiment and SM

Discrepancy between SM and experiment before 2021 April: 3.7 σ BNL Result Phys Rev D73, 072003 (2006): $a_{\mu}^{\text{Exp}} = 116\,592\,089\,(63) \times 10^{-11}$ (540 ppb) 2020 Whitepaper Result arXiv:2006.04822v1: $a_{\mu}^{\text{SM}} = 116\,591\,810\,(43) \times 10^{-11}$ (370 ppb)

Goal: Measure a_{μ} to 140 ppb, a fourfold improvement over BNL result Probe Standard Model predictions for new physics effects

$$\vec{\omega}_{\text{cyclotron}} = \frac{e}{\gamma m} \vec{B} \approx 2\pi \times 6.7 \text{ MHz}$$

$$\vec{\omega}_{\text{spin}} = g \frac{e}{2m} \vec{B} - (1 - \gamma) \frac{e}{\gamma m} \vec{B} \approx 2\pi \times 6.9 \text{ MHz}$$

$$\vec{\omega}_{a} = a_{\mu} \left[\frac{e}{m} \vec{B} \right] \approx 229 \text{ kHz}$$

- Want $a_{\mu} \Rightarrow$ need to measure ω_a and \vec{B}
- Muon anomalous precession frequency ω_a
- Uniform magnetic field B in terms of proton NMR frequency: $\hbar \omega_p = 2\mu_p |B|$

Storage Ring Magnet

cross-section of the yoke

muon storage ring

- Superconducting coils
- C-shaped yoke
- 1.45T field strength

Muon Storage

muon storage ring

- Injection: inflector magnet
- Kick: fast-kickers
- Vertical focus: electrostatic quadrupoles (ESQ)

Anomalous Precession Measurement ω_a

- Self-analyzing decay: $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_{\mu}$
- 24 calorimeters of 9×6 PbF₂ crystals detect e⁺
- Highest-energy e^+ emitted preferentially along muon spin
- Results in a "wiggle" arrival time of these e^+ in calorimeters

 e^+ Signal from Muon Decay: $N_{\text{ideal}}(t) = N_0 \exp(-t/\gamma \tau_{\mu}) \left[1 + A \cos(\omega_a t + \phi)\right]$

Method: Pulsed Nuclear Magnetic Resonance

Fixed Probe

Fixed Probe:

- 378 fixed probes
- 72 azimuthal positions
- continuously track field drift

Trolley:

- 9,000 measurements for each of the 17 probes
- map the field every 2 or 3 days
- Synchronizes the fixed probes to field maps

Calibration probe (CP):

- Moveable probe
- Pure water sample
- Calibrate the trolley measurement

Correcting

Measurement of a_{μ}

Precession Frequency Analysis

- Analysis Method
- Measured g-2 Frequency
- Beam Dynamics Correction

Analysis Method

 e^+ Signal from Muon Decay: $N_{\text{ideal}}(t) = N_0 \exp(-t/\gamma \tau_{\mu}) \left[1 + A \cos(\omega_a t + \phi)\right]$

- Counting the number of e⁺ above the threshold energy using different weight w(E) introduces two ω_a analysis methods
 1. T-method: w(E) = 1
 - 2. A-method: w(E) = A(E)
- The statistical uncertainty $\propto 1/\sqrt{NA^2}$
- Fourier transform of residuals from a fit to simple 5-parameters fit function reveals additional frequencies
- Software blinded analysis:

 $\omega_a(R) = 2\pi \times 0.2291 MHz \left[1 + (R + \Delta R) \cdot 10^{-6} \right]$

Measured g-2 Frequency

$$F(t) = N_0 \cdot N_x(t) \cdot N_y(t) \cdot \Lambda(t) \cdot e^{-t/\gamma \tau_{\mu}} \cdot [1 + A_0 \cdot A_x(t) \cdot \cos(\omega_a^m t + \phi_0 \cdot \phi_x(t))]$$

$$\begin{split} N_x(t) &= 1 + e^{-t/\tau_{\rm CBO}} A_{N,x,1} \cos(\omega_{\rm CBO}t + \phi_{N,x,1}) \\ &+ e^{-2t/\tau_{\rm CBO}} A_{N,x,2} \cos(2\omega_{\rm CBO}t + \phi_{N,x,2}) \\ N_y(t) &= 1 + e^{-t/\tau_y} A_{N,y,1} \cos(\omega_y t + \phi_{N,y,1}) \\ &+ e^{-2t/\tau_y} A_{N,y,2} \cos(\omega_{VW}t + \phi_{N,y,2}) \\ \Lambda(t) &= 1 - K_{\rm loss} \int_0^t e^{t'/\gamma\tau_\mu} L(t') \, \mathrm{d}t' \\ A_x(t) &= 1 + e^{-t/\tau_{\rm CBO}} A_{A,x,1} \cos(\omega_{\rm CBO}t + \phi_{A,x,1}) \\ \phi_x(t) &= 1 + e^{-t/\tau_{\rm CBO}} A_{\phi,x,1} \cos(\omega_{\rm CBO}t + \phi_{\phi,x,1}) \end{split}$$

$$\chi^2 = \sum_{i=1}^{ndf} \left[\frac{N_{bin} - N_{fit}}{\sigma(N_{bin})}\right]^2$$

Detector effect:

Event **pileup** which changes the phase and normalization

Gain change in calorimeter determined from laser data

Measured g-2 Frequency

60

Run-1a Run-1b

Run-1d

500

$$F(t) = N_0 \cdot N_x(t) \cdot N_y(t) \cdot \Lambda(t) \cdot e^{-t/\gamma \tau_{\mu}} \cdot [1 + A_0 \cdot A_x(t) \cdot \cos(\omega_a^m t + \phi_0 \cdot \phi_x(t))]$$

$$\begin{split} N_x(t) &= 1 + e^{-t/\tau_{\rm CBO}} A_{N,x,1} \cos(\omega_{\rm CBO}t + \phi_{N,x,1}) \\ &+ e^{-2t/\tau_{\rm CBO}} A_{N,x,2} \cos(2\omega_{\rm CBO}t + \phi_{N,x,2}) \\ N_y(t) &= 1 + e^{-t/\tau_y} A_{N,y,1} \cos(\omega_y t + \phi_{N,y,1}) \\ &+ e^{-2t/\tau_y} A_{N,y,2} \cos(\omega_{VW}t + \phi_{N,y,2}) \\ \Lambda(t) &= 1 - K_{\rm loss} \int_0^t e^{t'/\gamma\tau_\mu} L(t') \, \mathrm{d}t' \\ A_x(t) &= 1 + e^{-t/\tau_{\rm CBO}} A_{A,x,1} \cos(\omega_{\rm CBO}t + \phi_{A,x,1}) \\ \phi_x(t) &= 1 + e^{-t/\tau_{\rm CBO}} A_{\phi,x,1} \cos(\omega_{\rm CBO}t + \phi_{\phi,x,1}) \end{split}$$

$$\chi^2 = \sum_{i=1}^{ndf} \left[\frac{N_{bin} - N_{fit}}{\sigma(N_{bin})}\right]^2$$

Beam Dynamic effect: Coherent Betatron Oscillations (CBO) due to beam motion

• Uncertainty for Run1:

Statistic: 434ppb / Systematic: 56ppb

- 2 different algorithms to reconstruct positrons
- 6 different analysis groups with 4 different methods
- Final combination come from the 4 A-method due to statistically optimal

R (ppm) for each dataset						Naive R	
Recon.	Method	Pileup	Run-1a	Run-1b	Run-1c	Run-1d	Average (ppm
global	А	empirical	-82.98 ± 1.21	-81.70 ± 1.03	-82.30 ± 0.82	-82.34 ± 0.68	-82.30 ± 0.43
local	А	shadow	-83.23 ± 1.20	-81.77 ± 1.02	-82.35 ± 0.82	-82.48 ± 0.67	-82.41 ± 0.43
local	А	shadow	-83.17 ± 1.21	-81.84 ± 1.03	-82.50 ± 0.83	-82.45 ± 0.68	-82.44 ± 0.44
local	А	pdf	-83.39 ± 1.22	-81.72 ± 1.04	-82.32 ± 0.83	-82.42 ± 0.68	-82.39 ± 0.44
local	Т	shadow	-83.55 ± 1.36	-81.80 ± 1.16	-82.67 ± 0.93	-82.45 ± 0.76	-82.54 ± 0.49
global	Т	empirical	-82.96 ± 1.34	-81.96 ± 1.14	-82.77 ± 0.91	-82.47 ± 0.75	-82.52 ± 0.48
local	Т	shadow	-83.64 ± 1.33	-81.83 ± 1.12	-82.64 ± 0.91	-82.63 ± 0.74	-82.62 ± 0.48
local	Т	shadow	-83.49 ± 1.34	-81.75 ± 1.13	-82.64 ± 0.91	-82.42 ± 0.75	-82.50 ± 0.48
local	Т	pdf	-83.37 ± 1.33	-81.76 ± 1.13	-82.65 ± 0.91	-82.47 ± 0.74	-82.51 ± 0.48
local	R	shadow	-83.72 ± 1.36	-81.96 ± 1.16	-82.67 ± 0.93	-82.52 ± 0.76	-82.62 ± 0.49
n/a	0	n/a	-83.96 ± 2.07	-79.70 ± 1.76	-81.03 ± 1.45	-82.74 ± 1.29	-81.82 ± 0.78

Beam Dynamic Correction

- *C_e*: Muons with p ≠ 3.09 GeV/c are slightly affected by the radial electric field
- C_p : A small pitch angle (vertically) modulates $\beta \times \mathbf{B}$ term and the correction is required
- *C_{ml}*: Muon losses (ML) induce a (tiny) phase shift
- *C_{pa}*: Muon phase change due to 1) beam changing from early to late and 2) the measured phase depends on the decay coordinates

	Correction (ppb)	Uncertainty (ppb)
ω_a^m statistical		434
C _e	489	53
C_p	180	13
C_{ml}^{r}	-11	5
$C_{\rm pa}$	-158	75
C _{total}	499	93

Magnetic Field Analysis

- Field Calibration
- Measured Field
- Muon Weighting
- Transients Correction

 A specially designed calibration probe provides the connection to a shielded proton in a spherical water sample: (accuracy of 15 ppb)

$$\omega_p'(T_r) = \omega^{cp}(T) \left[1 + \delta^T \left(\mathbf{H}_2 \mathbf{O}, T_r - T \right) + \delta^b \left(\mathbf{H}_2 \mathbf{O}, T \right) + \delta^s + \delta^w + \delta^{\mathrm{RD}} + \delta^d \right]$$

• Calibration correction that relates trolley/calibration probe measurement to equivalent shielded proton in spherical water sample frequency ω'_p is needed

$$\omega_{p,trolley} \leftrightarrow \omega_{p,cp} \leftrightarrow \omega'_p$$

- The trolley calibration requires to measure the "same" field at the "same" position
 - ✓ Same field: uniform field (<20ppb/mm)
 - ✓ Same position: align CP and trolley probe (<0.5mm)

• the magnetic field is measured at ~9,000 azimuthal slices ϕ

Field Mapping

• The trolley frequency measurements at each slice can be expressed in terms of multipole moments: $B_y = a_0 + \sum_{n=0}^{\infty} (r/r_0)^n [a_n cos(n\theta) + b_n sin(n\theta)]$

n=1

Field Tracking

- When the beam is on, the trolley is parked in the garage
- The muon orbit field can not be measured directly
- Need to use fixed probes to track the field during data taking
- Interpolate between trolley runs using fixed probe data

Muon Weighting / Transient Correction

Relative Field (ppb

200

-200

-400

- M(x, y, φ): Want the field actually experienced by muons, need to know the muon spatial & time distribution
- B_q: The ESQs are pulsed every 10ms and the motion of these plates causes a magnetic field perturbation
- B_k : The fast kickers pulse induces eddy currents in the surrounding metal and perturb the field

Data set	$\tilde{\omega}_p'(T_r)/2\pi$ (Hz)	Uncertainty (ppb)
Run-1a	61,791,871.2	115
Run-1b	61,791,937.8	127
Run-1c	61,791,845.4	125
Run-1d	61,792,003.4	108
	Average over all data se	ets
Field	56	
ES	92	
Kic	37	
	114	

Measurement of a_{μ} Run1 result

Quantity	Correction Terms	Uncertainty
	(ppb)	(ppb)
ω_a^m (statistical)		434
ω_a^m (systematic)	_	56
C_e	489	53
C_p	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$\overline{f_{\text{calib}}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle$		56
B_k	-27	37
B_q	-17	92
$\mu_p'(34.7^\circ)/\mu_e$	_	10
m_{μ}/m_e	_	22
$g_e/2$	_	0
Total systematic	_	157
Total fundamental factors	_	25
Totals	544	462

• Measured a_{μ} to 0.46 ppm

- 4.2σ differ from the SM value
- Only 6% of the full data set

Changing CBO frequency

Muon distribution

Quantity	Correction Terms	Uncertainty
	(ppb)	(ppb)
ω_a^m (statistical)		434
ω_a^m (systematic)	_	56
C_e	489	53
C_p	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle$	_	56
B_k	-27	37
B_q	-17	92
$\mu_p'(34.7^\circ)/\mu_e$	_	10
m_{μ}/m_e	_	22
$g_e/2$	_	0
Total systematic	_	157
Total fundamental factors	_	25
Totals	544	462

Challenges in Run1

Bad resistors:

- 0.8 了

- 2 of 32 HV resistors on quad plates were damaged
- Observe a changing CBO frequency by tracker
- Larger phase acceptance (C_{pa}) uncertainty Kick Strength and Shape:
- Sub-standard, non-uniform kick
- Muon equilibrium orbit displaced by ~6 mm
- Larger E-field correction (C_e) and CBO amplitude Quad transient correction (B_q):
- Substructure not measured in Run1

Hall temperature instability

- ppm level variations of the magnetic field
 Many kicker/ESQ setting
- Need to perform individual analysis for four sub-datasets and then combine

Major Upgrades beyond Run1

- Replaced damaged resistors
- Higher kicker voltage to center beam
- More systematic measurement of transient field
- More stable temperature control
- More stable run & minimize configuration change
- Develop optimal methods in both ω_a and ω_p

analysis to reduce the systematic uncertainties

Theory Update Since 2021 April

- HVP lattice calculations vary in a wide range, converging not easy
- Weight the lattice results to concentrate on an intermediate energy range where the calculations are thought to be more reliable
- Mainz/CLS and ETMC(2022) results agree with BMW20
- The lattice results conflict with the longstanding data-driven number
- New results expected soon from FNAL/MILC & RBC/UKQCD

Outlook

- The Fermilab Muon g-2 experiment measured a_{μ} to 0.46ppm in Run1
- The discrepancy with the Standard Model prediction is 4.2σ
- Run 1 is only 6% of the final data set
- Up to date, 5 Runs of data have been collected: 19xBNL statistics
- Stay tuned for more results to come

Thanks!

Overview of the Experiment

muon storage ring

- Muon Injection
 - Need to cancel field in beam channel
 - Prevents strong deflection of the beam
 - Minimal perturbation to storage magnetic field
 - Superconducting inflector magnet are used to achieve above requirements

Overview of the Experiment

muon storage ring

Muon Storage: Kicker

- After inflector, muons enter storage region at 77 mm outside central closed orbit
- The fast-kicker system steers muons onto stored orbit
- Muon Storage: Electrostatic Quadrupoles (ESQ)
 - Drives the muons towards the central part of storage region vertically
 - Aluminum ESQ cover ~43% of total ring

$$\boldsymbol{\omega}_{\boldsymbol{a}} = -\frac{e}{m_{\mu}} [a_{\mu}\boldsymbol{B} - (a_{\mu} - \frac{1}{\gamma^2 - 1}) \frac{\boldsymbol{\beta} \times \boldsymbol{E}}{c}]$$

 $\gamma = 29.3$