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• “So far we have analyzed less than 6% of the data that the experiment will eventually collect.
Although these first results are telling us that there is an intriguing difference with the Standard
Model, we will learn much more in the next couple of years.” – Chris Polly, Fermilab scientist,
co-spokesperson for the Fermilab muon g − 2 experiment.
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Apr 7, 2021
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q = p′ − p, ν

p p′

Dirac equation implies:

ū(p′)γνu(p)

g = 2

q = p′ − p, ν

p p′

ū(p′)

(
F1(q

2)γν + i
F2(q

2)[γν , γρ]qρ
4m

)
u(p)

a = F2(q
2 = 0) =

g − 2
2

(Euclidean space time)

• The quantity a is called the anomalous magnetic moments.

• Its value comes from quantum correction.
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Muon g − 2 Theory Initiative White paper posted 10 June 2020.
132 authors from worldwide theory + experiment community. [Phys. Rept. 887 (2020) 1-166]

• Two methods: dispersive + data ↔ lattice QCD

From Aida El-Khadra’s theory talk during the Fermilab g − 2 result announcement.
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Figure credit: Stephen R. Sharpe.
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⟨O(U, q, q̄)⟩ =
∫
[DU]

∏
q[Dqq][Dq̄q]e−S

latt
E O(U, q, q̄)∫

[DU]
∏
q[Dqq][Dq̄q]e−S

latt
E

=

∫
[DU]e−Slatt

gauge
∏
q det

(
Dlatt
µ γµ + amq

)
Õ(U)∫

[DU]e−Slatt
gauge

∏
q det

(
Dlatt
µ γµ + amq

)
Monte Carlo:

• The integration is performed for all the link variables: U. Dimension is L3 × T × 4× 8.
• Sample points the following distribution:

e−S
latt
gauge(U)

∏
q

det
(
Dlatt
µ (U)γµ + amq

)
• Therefore:

⟨O(U, q, q̄)⟩ =
1

Nconf

Nconf∑
k=1

Õ(U(k))

• Parameters in lattice QCD calculations (e.g. isospin symmetric (mu = md = ml) and three
flavor u, d, s theory):

g aml ams

Note that lattice spacing a is determined by g via the renormalization group equation.

• The experimental inputs needed to determine these parameters can be: mπ/mΩ, mK/mΩ.
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Diagrams
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Diagrams – Isospin limit 2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the �� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2, ↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e�ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e�ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the �� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e�ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-
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Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e�ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).
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FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.

Diagrams – QED corrections

and fit d�.
red For the finite-volume errors, the two-pion states in d are identical to the

I = 1 contributions of c and can be calculated using the GSL estimate which
we use for c. For the omega-related finite-volume errors, I will take the fitted
d� and E� and use this as the full result at finite-volume and compare it to
a GS model with omega mass from the fitted E� and width from the PDG
in infinite-volume. I should also compare this to R-ratio results for the I = 0
channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all O(↵) and O(mu � md)
corrections. The corresponding list of diagrams is given in Figs. 1 and 2.
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Figure 1: QED corrections
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Figure 2: SIB corrections

4

Diagrams – Strong isospin breaking
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• Need to calculate and cross check all the contributions.
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T. Blum 2003; D. Bernecker, H. Meyer 2011.

C(t) =
1

3

∑
x⃗

∑
j=0,1,2

⟨Jemj (x⃗ , t)Jemj (0)⟩QCD

aHVP LO
µ =

(α
π

)2 ∫ ∞

0

dK2f (K2)Π̂(K2) =

+∞∑
t=0

w(t)C(t)

QED
and

strong isospin
breaking

• From muon g − 2 theory initiative white paper (2020). Value in unit of 10−10

• Light quark connected diagram has the largest contribution and largest uncertainty.
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• Dispersive method via R-ratio
(red points) is mature and
reproducible.

• Lattice (blue points) errors are
limited by statistics.
Except for BMW, which beats
down the statistical error, result
is limited by systematic error:
BMW 20: 707.5(2.3)stat(5.0)sys

• Lattice-QCD calculations of
comparable precision needed.

• Consistency is needed to claim
new physics.
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• Dispersive method via R-ratio
(red points) is mature and
reproducible.

• Lattice (blue points) errors are
limited by statistics.
Except for BMW, which beats
down the statistical error, result
is limited by systematic error:
BMW 20: 707.5(2.3)stat(5.0)sys

• Lattice-QCD calculations of
comparable precision needed.

• Consistency is needed to claim
new physics.
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T. Blum 2003; D. Bernecker, H. Meyer 2011.

C(t) =
1

3

∑
x⃗

∑
j=0,1,2

⟨Jemj (x⃗ , t)Jemj (0)⟩QCD

aHVP LO
µ =

+∞∑
t=0

w(t)C(t)

• Statistical error is mostly from:
Light quark connected diagram at t ≳ 1.5 fm

– More configurations (BMW 20 used ∼ 20, 000).

– Use low modes averaging to gain full volume average. ✓

– Bounding method on the long distance tail. ✓

– Study the ππ system spectrum to calculate C(t) large t.

∗ Not used in any published work yet!
∗ On-going efforts with promising initial results.

• Systematic error is mostly from the continuum extrapolation.



Muon g − 2 HVP: long distance part from lattice calculation 14 / 27

• Main idea is that: one does not have to calculate the long distance part of the correlation
function directly.

C(t) =
1

3

∑
x⃗

∑
j=0,1,2

⟨Jj(x⃗ , t)Jj(0)⟩

=
∑
n

V

3

∑
j=0,1,2

⟨0|Jj(0)|n⟩⟨n|Jj(0)|0⟩e−Ent

• The summation over n is limited to zero momentum states and states are normalized to
“1”.

• At large t, only lowest few states contribute. We only need the matrix elements
⟨n|Jj(0)|0⟩ and the corresponding energy En.

• Need to study the spectrum of the ππ system!

• Can reduce the statistical error beyond the gauge noise limit!



Muon g − 2 HVP: Correlation Function Reconstruction - 48I 15 / 27Correlation Function Reconstruction - 48I
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GEVP results to reconstruct long-distance behavior of
local vector correlation function needed to compute connected HVP

Explicit reconstruction good estimate of correlation function at long-distance,
missing excited states at short-distance

More states =⇒ better reconstruction, can replace C(t) at shorter distances

Aaron S. Meyer Section: Bounding Method and the Muon HVP 17/ 25

RBC-UKQCD by Aaron Meyer and Christoph Lehner
Preliminary
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RBC-UKQCD PRL 121, 022003 (2018)

Window contribution allows a high precision study of the continuum extrapolation.

aHVP LO
µ =

+∞∑
t=0

w(t)C(t) w(t) = wSD(t) + wW(t) + wLD(t)

How does this translate to the time-like region?

Supplementary Information – S1

SUPPLEMENTARY MATERIAL

In this section we expand on a selection of technical de-
tails and add results to facilitate cross-checks of di↵erent
calculations of aHVP LO

µ .

Continuum limit: The continuum limit of a selec-
tion of light-quark window contributions aW

µ is shown in
Fig. 8. We note that the results on the coarse lattice di↵er
from the continuum limit only at the level of a few per-
cent. We attribute this mild continuum limit to the fa-
vorable properties of the domain-wall discretization used
in this work. This is in contrast to a rather steep contin-
uum extrapolation that occurs using staggered quarks as
seen, e.g., in Ref. [42].

The mild continuum limit for light quark contribu-
tions is consistent with a naive power-counting estimate
of (a⇤)2 = 0.05 with ⇤ = 400 MeV and suggests that
remaining discretization errors may be small. Since we
find such a mild behavior not just for a single quantity
but for all studied values of aW

µ with t0 ranging from 0.3
fm to 0.5 fm and t1 ranging from 0.3 fm to 2.6 fm, we
suggest that it is rather unlikely that the mild behav-
ior is result of an accidental cancellation of higher-order
terms in an expansion in a2. This lends support to our
quoted discretization error based on an O(a4) estimate.
In future work, this will be subject to further scrutiny by
adding a data-point at an additional lattice spacing.

Energy re-weighting: The top panel of Fig. 9 shows
the weighted correlator wtC(t) for the full aµ as well as
short-distance and long-distance projections aSD

µ and aLD
µ

for t0 = 0.4 fm and t1 = 1.5 fm. The bottom panel of
Fig. 9 shows the corresponding contributions to aµ sep-
arated by energy scale

p
s. We notice that, as expected,

aSD
µ has reduced contributions from low-energy scales and

aLD
µ has reduced contributions from high-energy scales.

In the limit of projection to su�ciently long distances, we
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(top) and the e↵ect of the window in terms of re-weighting
energy regions (bottom).

may attempt to contrast the R-ratio data directly with
an exclusive study of the low-lying ⇡⇡ states in the lattice
calculation. This is left to future work.

Statistics of light-quark contribution: We use an
improved statistical estimator including a full low-mode
average for the light-quark connected contribution in the
isospin symmetric limit as discussed in the main text.
For this estimator, we find that we are able to saturate
the statistical fluctuations to the gauge noise for 50 point
sources per configuration. For the 48I ensemble we mea-
sure on 127 gauge configurations and for the 64I ensem-
ble we measure on 160 gauge configurations. Our result
is therefore obtained from a total of approximately 14k
domain-wall fermion propagator calculations.

Results for other values of t0 and t1: In Tabs. S I-
S VII we provide results for di↵erent choices of window
parameters t0 and t1. We believe that this additional
data may facilitate cross-checks between di↵erent lattice
collaborations in particular also with regard to the up
and down quark connected contribution in the isospin
limit.
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may attempt to contrast the R-ratio data directly with
an exclusive study of the low-lying ⇡⇡ states in the lattice
calculation. This is left to future work.

Statistics of light-quark contribution: We use an
improved statistical estimator including a full low-mode
average for the light-quark connected contribution in the
isospin symmetric limit as discussed in the main text.
For this estimator, we find that we are able to saturate
the statistical fluctuations to the gauge noise for 50 point
sources per configuration. For the 48I ensemble we mea-
sure on 127 gauge configurations and for the 64I ensem-
ble we measure on 160 gauge configurations. Our result
is therefore obtained from a total of approximately 14k
domain-wall fermion propagator calculations.

Results for other values of t0 and t1: In Tabs. S I-
S VII we provide results for di↵erent choices of window
parameters t0 and t1. We believe that this additional
data may facilitate cross-checks between di↵erent lattice
collaborations in particular also with regard to the up
and down quark connected contribution in the isospin
limit.

Most of ππ peak is captured by window from t0 = 0.4 fm to t1 = 1.5 fm,
so replacing this region with lattice data reduces the dependence on
BaBar versus KLOE data sets.

5 / 24

• Splitting sum into three parts allows crosschecks:

– short distance ⇐ discretization effects

– long distance ⇐ noisy ππ tail

– intermediate (Window): sweet spot

• Can form windows from R(e+e−) dispersive
analysis too.
Combine “window” from lattice with dispersive
analysis.

• Compare “window” among lattice-QCD
calculations
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RBC-UKQCD PRL 121, 022003 (2018)

Window contribution allows a high precision study of the continuum extrapolation.

aHVP LO
µ =

+∞∑
t=0

w(t)C(t) w(t) = wSD(t) + wW(t) + wLD(t)

• Splitting sum into three parts allows crosschecks:

– short distance ⇐ discretization effects

– long distance ⇐ noisy ππ tail

– intermediate (Window): sweet spot

• Can form windows from R(e+e−) dispersive
analysis too.
Combine “window” from lattice with dispersive
analysis.

• Compare “window” among lattice-QCD
calculations
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RBC-UKQCD PRL 121, 022003 (2018)

Window contribution allows a high precision study of the continuum extrapolation.

aHVP LO
µ =

+∞∑
t=0

w(t)C(t) w(t) = wSD(t) + wW(t) + wLD(t)

• Splitting sum into three parts allows crosschecks:

– short distance ⇐ discretization effects

– long distance ⇐ noisy ππ tail

– intermediate (Window): sweet spot

• Can form windows from R(e+e−) dispersive
analysis too.
Combine “window” from lattice with dispersive
analysis.

• Compare “window” among lattice-QCD
calculations
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• The white paper result for the HVP is a community-vetted method average for the data-driven
approach. It accounts for spreads in sub-contributions between individual results (KNT/DHMZ) that
may not be visible in the agreement of looking at the final results for the HVP. It should be noted
that its error estimate also accounts for the tension between BaBar and KLOE experimental inputs.

• We are now in the fortunate situation that we have a first lattice result with sub-percent precision
(BMW). It is clear that to safely assess systematic uncertainties, most notably the one related to the
choice of the lattice regulator, calculations by other lattice groups with a similar precision will be
essential. The importance of having more than one lattice calculations of the same quantity and
obtained with different lattice discretizations is well understood inside the lattice community.

• On the way to a method average for lattice QCD, it is prudent to also look at individual
sub-contributions and their agreement, similar to what was done for the data driven approach. Here
the tension in the window results need to be addressed. Also, individual QED corrections should be
cross checked (currently there are some tensions). This is possible since these sub-contributions are
already available by different collaborations at adequate precision for such a comparison.

• Finally, it should also not be ignored that for the standard window result, there are larger (> 3σ)
tensions between different determinations.
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• Gluons and sea quark loops (not directly connected to photons) are included automatically
to all orders!

• There are additional different permutations of photons not shown.

• The second row diagrams are suppressed by flavor SU(3) symmetry (and small charge
factors, 1/Nc , etc). The contributions are numerically very small.
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Contribution PdRV(09) [471] N/JN(09) [472, 573] J(17) [27] Our estimate

π0, η, η�-poles 114(13) 99(16) 95.45(12.40) 93.8(4.0)
π,K-loops/boxes −19(19) −19(13) −20(5) −16.4(2)

S -wave ππ rescattering −7(7) −7(2) −5.98(1.20) −8(1)

subtotal 88(24) 73(21) 69.5(13.4) 69.4(4.1)

scalars − − − �
− 1(3)tensors − − 1.1(1)

axial vectors 15(10) 22(5) 7.55(2.71) 6(6)
u, d, s-loops / short-distance − 21(3) 20(4) 15(10)

c-loop 2.3 − 2.3(2) 3(1)

total 105(26) 116(39) 100.4(28.2) 92(19)

Table 15: Comparison of two frequently used compilations for HLbL in units of 10−11 from 2009 and a recent update with our estimate. Legend:
PdRV = Prades, de Rafael, Vainshtein (“Glasgow consensus”); N/JN = Nyffeler / Jegerlehner, Nyffeler; J = Jegerlehner.

in Table 15.42 While the central values are all quite close to each other (the largest discrepancy is with the Glasgow
consensus, which, however, includes a large part of the short-distance contribution in the pseudoscalar poles) and all
compatible within errors, the largest improvement is in the uncertainty, which has been reduced by a factor 6 to 3.

The lower part of the table contains the remaining contributions, which still suffer from significant uncertainties,
further separated into the contribution from light quarks as well as the c-loop. For these a comparison among different
evaluations is more difficult, because model dependence is still affecting all contributions (with the exception of the
short-distance contribution evaluated here). It is in this second part of the table that future progress will have to
happen.

We have described above how we obtained our final error estimate. Just for comparison, in PdRV [471] all errors
have been added in quadrature, in N/JN [472, 573] all errors have been added linearly, and in J [27] the errors have been
added in quadrature and then multiplied by a factor 2 to account for possible model uncertainties so far unaccounted
for.

We also briefly comment on the numbers in the recent review by Danilkin, Redmer, and Vanderhaeghen [626]. The
main difference is their estimate of the pseudoscalar-pole contribution, 84(4) × 10−11, lower than our value by about
2.5σ, which is incompatible with what we know about this contribution as explained in Sec. 4.4. The smaller value for
the PS-poles is compensated by the quark-loop contribution, 20(4) × 10−11, which is a bit larger than our estimate of
the short-distance contribution, leading to a central value, 87(13) × 10−11, very close to ours. The errors in Ref. [626]
are added linearly, but in particular the uncertainties for the axial-vectors and the short-distance contribution are much
smaller than ours, which is the main reason for their rather small total uncertainty.

The comparison discussed here clearly shows that there has been significant progress since the time of the Glasgow
consensus. The development of a more systematic approach to the calculation of the HLbL contribution has led to
improved estimates of several of the underlying contributions. The shifts in the central values are relatively moderate,
never larger than two sigmas with respect to older estimates, but the overall shift is quite significant and in the negative
direction, thus increasing the discrepancy with the measured value. Even more important than the shift in the central
value is our ability to make better uncertainty estimates. In some cases these have been drastically reduced with
respect to the time of the Glasgow consensus, but in some others a better theoretical understanding of the formalism
has led to a more cautious attitude. The upshot is that even taking a conservative approach we could bring the total
uncertainty down to about 20% of the central value and the prospects for an even further reduction in the coming
years, towards the 10% goal, are very good as will be sketched in the next subsection.

42To make a meaningful comparison, since the largest contribution among the scalars is due to the σ/ f0(500), which is treated as a ππ rescattering
effect here, we have considered the contribution of the scalars of earlier evaluations in the line labeled “S -wave ππ rescattering.” This is indeed
justified for the scalar contribution −6.8(2.0) × 10−11 in the ENJL model from Ref. [484], as confirmed in Ref. [666]. The σ/ f0(500) is also
responsible for 50–80% of the value −6.0(1.2) × 10−11 from Ref. [27], depending on the mixing.
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• Values in the table is in unit of 10−11.

• Uncertainty of the analytically approach mostly come from the
short distance part.

q = p′ − p, ν

p p′
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T. Blum et al 2020. (PRL 124, 13, 132002)
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E.H. Chao et al 2021. (EPJC 81, 7, 651)
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• Mainz 21 is the most recent
lattice result. It uses heavier
pion mass with infinite volume
QED kernel and extrapolate to
the physical pion mass.

• RBC-UKQCD 19 is the first
lattice result. It uses physical
pion mass in the finite volume
QEDL scheme and extrapolate
to the infinite volume.

• White paper 2020 result uses dispersive relations and data. It is the sum of the contributions
from different cuts and poles.

• These three results have different systematics and agree well with each other. Uncorrelated
average gives: aHLbL

µ = 9.77(1.16)× 10−10.

• Hadronic light-by-light contribution cannot be the source of the muon g − 2 puzzle.
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• The errors of lattice QCD calculations comes from:

1. finite statistics → statistical error

2. non-zero lattice spacing → discretization error

– smaller lattice spacing a ≲ 0.06 fm
– compare different lattice actions: Staggered, Wilson, Domain Wall, etc

3. finite lattice size → finite volume error

4. non-physical pion mass → Chiral extrapolation
Many lattice calculations are now performed with physical pion mass, eliminating this
source of the systematic errors.

• Lattice QCD calculation is playing important role in determining the hadronic contribution
to muon g − 2 and many other physical observables.

• More accurate lattice results are expected when Fermilab releases their final result.

• Need more investigation on the tensions between the different HVP determinations and
the window quantities.



Thank You!
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