On the $\eta_1(1855)$ as a hadronic molecular state and its SU(3) partners

Mao-Jun Yan ¹ Jorgivan M. Dias ¹ Feng-Kun Guo ¹ and Bing-Song Zou ¹

¹CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

Introduction

Regarding the newly observed η_1 (1855) [3] is interpreted to be K_1 (1400) \bar{K} bound state in OBE [5], SU(3) symmetry is introduced to $K_1(1400)\bar{K}$ scattering in the framework of Chiral unitary approach. In the low energy scattering involving ϕ^8 (π , $K\eta$) mesons, the interaction are described in chiral perturbation theory, where the leading order in S-wave scattering is the famous Weinberg-Tomozawa term (WT),

$$\mathcal{L}_{I} = -\frac{1}{4f_{\pi}^{2}} \langle \left[\Phi^{\mu}, \partial^{\nu} \Phi_{\mu}\right] \left[\phi^{8}, \partial_{\nu} \phi^{8}\right] \rangle, \tag{1}$$

with $\Phi = (A_1, B_1)$ and $f_{\pi} = 92.1 \, \text{MeV}$, and Φ reads

$$A_{1}\left(1^{++}\right) = \begin{pmatrix} \frac{a_{1}^{0}}{\sqrt{2}} + \frac{f_{1}^{8}}{\sqrt{6}} & a_{1}^{+} & K_{1A}^{+} \\ a_{1}^{-} & -\frac{a_{1}^{0}}{\sqrt{2}} + \frac{f_{1}^{8}}{\sqrt{6}} & K_{1A}^{0} \\ K_{1A}^{-} & \bar{K}_{1A}^{0} & -\frac{2f_{1}^{8}}{\sqrt{6}} \end{pmatrix}, \quad B_{1}\left(1^{+-}\right) = \begin{pmatrix} \frac{b_{1}^{0}}{\sqrt{2}} + \frac{h_{1}}{\sqrt{6}} & b_{1}^{+} & K_{1B}^{+} \\ b_{1}^{-} & -\frac{b_{1}^{0}}{\sqrt{2}} + \frac{h_{1}}{\sqrt{6}} & K_{1B}^{0} \\ K_{1B}^{-} & \bar{K}_{1B}^{0} & -\frac{2}{\sqrt{6}}h_{1} \end{pmatrix}. \quad (2)$$

From this Lagrangian we obtain the S-wave transition amplitude among the channels that is

$$V_{ij}(s) = -\frac{\epsilon \cdot \epsilon'}{8F_{\pi}^2} C_{ij} \left[3s - \left(M^2 + m^2 + M'^2 + m'^2 \right) - \frac{1}{s} \left(M^2 - m^2 \right) \left(M'^2 - m'^2 \right) \right], \tag{3}$$

where ϵ (ϵ') stands for the polarization four-vector of the incoming (outgoing) axial-vector meson. The masses M (M'), m (m') correspond to the initial (final) axial-vector mesons and initial (final) pseudoscalar mesons respectively. The indices i and j represent the initial and final PA states, respectively.

The unitarization procedure of the scattering amplitude (V in Eq. 3) is referenced to ChUA,

$$T = (1 - VG)^{-1}V \tag{4}$$

where the G loop function is dimensional regularized and the subtraction is matched at threshold from loop function regularized by three-momentum cut-off ($q_{max} = 0.7 \,\text{GeV}$).

Flavor symmetries in mesons

The physical axial-vector mesons are mixtures of singlet and octet,

$$\eta = \cos\theta_{P}\eta^{8} - \sin\theta_{P}\eta^{1}, \quad \eta' = \sin\theta_{P}\eta^{8} + \cos\theta_{P}\eta^{1},
f_{1}(1285) = \cos\theta_{3P_{1}}f_{1}^{1} + \sin\theta_{3P_{1}}f_{1}^{8}, \quad f_{1}(1420) = -\sin\theta_{3P_{1}}f_{1}^{1} + \cos\theta_{3P_{1}}f_{1}^{8},
h_{1}(1170) = \cos\theta_{1P_{1}}h_{1}^{1} + \sin\theta_{1P_{1}}h_{1}^{8}, \quad h_{1}(1415) = -\sin\theta_{1P_{1}}h_{1}^{1} + \cos\theta_{1P_{1}}h_{1}^{8},
K_{1}(1270) = K_{1A}\sin\theta_{K_{1}} + K_{1B}\cos\theta_{K_{1}}, \quad K_{1}(1400) = K_{1A}\cos\theta_{K_{1}} - K_{1B}\sin\theta_{K_{1}},$$

where the mixing angles are listed as follows,

	θ_{K_1}	$ heta_{^3P_1}$	${\theta_1}_{P_1}$	θ_P
Set - A	57°	52.0°	-17.5°	-11.5°
Set - B	34°	23.1°	28.0°	-11.5°

Table 1. The mixing angles $\theta_{K1, {}^{1}P_{1}, {}^{3}P_{1}}$ are correlated in Ref.[4].

Isoscalar scattering

The isoscalar coupled scattering begins with axial-vector meson are in zero width, where the thresholds are listed as follows

Channel	$a_1\pi$	$K_1(1270)\bar{K}$	$f_1(1285)\eta$	$K_1(1400)\bar{K}$	$f_1(1420)\eta$
Threshold	1368	1748	1829	1898	1973

Isoscalar scattering

Solving the Bethe-Salpeter equation in Eq. 4, there are poles in the T-matrix, where the poles and corresponding coupling with respect to channels are presented in Table. 1.

Poles (Set A)		Channels	5		
1.84	$a_1\pi$	$K_1(1270)\bar{K}$	$f_1(1285)\eta$	$K_1(1400)\bar{K}$	$f_1(1420)\eta$
-i0.00					
(++)					
g_l	-0.02 - i0.01	0.05 - i0.2	0.77 - i0.07	23.63 - i0.72	0.36 - i0.04
Poles (Set B)		Channels			
1.84	$a_1\pi$	$K_1(1270)\bar{K}$	$f_1(1285)\eta$	$K_1(1400)\bar{K}$	$f_1(1420)\eta$
-i0.00					
(++)					
g_l	-0.10 - i0.05	0.01 - i0.05	0.91 - i0.09	22.24 - i0.81	3.93 - i0.41

Comparing to the scattering without including axial-vector meson width, the inclusion of meson width modifies the line shapes of $|T_{44}|^2$ and nontrivial line shapes appear around 1900 MeV.

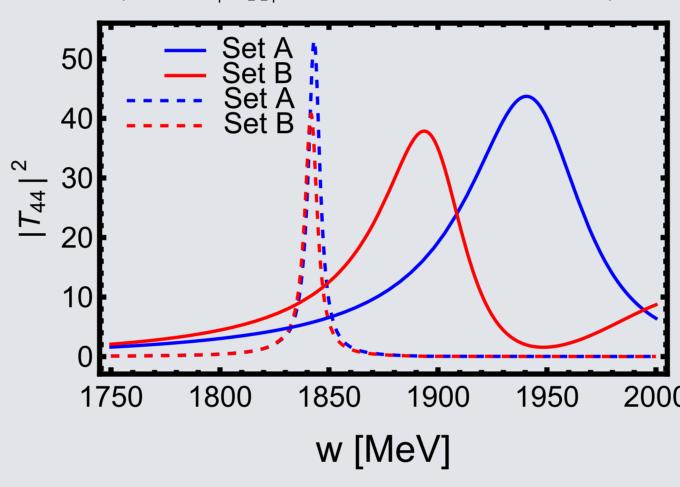
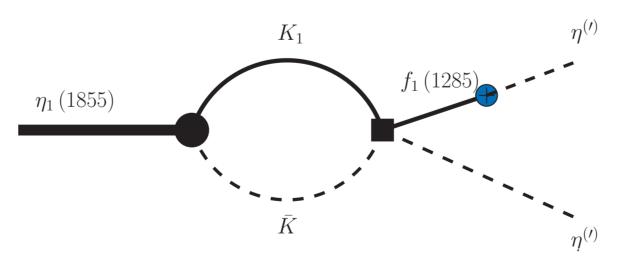



Figure 1. The dashed and solid lines correspond to zero and full widths ($\omega_i \to \omega_i - i\Gamma_i/2$) of the axial-vector mesons in G^{Cut} .

Isoscalar scattering: $a_1 - \pi$ mixing in two-body decay of $\eta_1(1855)$

Considering $\eta_1(1855)$ is observed in $\eta\eta'$ invariant mass distribution, the decay width of $\eta_1 \to \eta\eta'$ can be predicted via $a_1 - \pi$ in Fig. 1.

Referencing the mixing,

$$\partial_{\mu}\pi \rightarrow \partial_{\mu}\pi + \lambda_1 \, m_{a1} \, a_{1\mu} \,,$$

the transition between $K_1(1400)\bar{K}$ and $\eta'\eta$ reads

$$\mathcal{A}^p \propto -\lambda_1 \frac{C_{ij}}{4f_\pi^2} \epsilon_{K_1} \left(2m_{K_1} E_K + 2m_{f_1} E_\eta \right) \vec{\epsilon}_{f_1},$$

which contributes to the decay width,

$$\Gamma_{\eta\eta'} = \left(29.76^{-8.67}_{+9.78} \,\text{MeV}\right)^A \, or \, \left(15.72^{-4.30}_{+5.01} \,\text{MeV}\right)^B, \, \lambda_1 = 1.6.$$

Isovector scattering

In the coupled channel scattering in I=1 sector, there are poles being candidates of $\pi_1 \, (1400/1600)$.

Poles (Set A)	Channels					
1.47	$b_1\pi$	$f_1(1285)\pi$	$f_1(1420)\pi$	$K_1(1270)\bar{K}$	$a_1\eta$	$K_1(1400)\bar{K}$
-i0.12						
(-+++++)						
g_l	3.94 - i15.31	-0.00 + i0.00	-0.00 + i0.00	0.09 - i1.05	-0.00 + i0.00	-0.20 - i1.50
1.52	$b_1\pi$	$f_1(1285)\pi$	$f_1(1420)\pi$	$K_1(1270)\bar{K}$	$a_1\eta$	$K_1(1400)\bar{K}$
-i0.04						
(+-)						
g_l	2.14 - i2.98	4.27 - i0.93	1.36 + i0.43	7.07 + i2.37	7.52 - i1.51	0.95 - i2.15
Poles (Set B)	Poles (Set B) Channels					
1.47	$b_1\pi$	$f_1(1285)\pi$	$f_1(1420)\pi$	$K_1(1270)\bar{K}$	$a_1\eta$	$K_1(1400)\bar{K}$
-i0.12						
(-+++++)						
g_l	4.31 - i15.18	-0.00 + i0.00	-0.00 + i0.00	3.67 - i2.41	-0.00 + i0.00	-0.05 - i0.66
1.57	$b_1\pi$	$f_1(1285)\pi$	$f_1(1420)\pi$	$K_1(1270)\bar{K}$	$a_1\eta$	$K_1(1400)\bar{K}$
-i0.02						
(+-)						
g_l	-0.36 - i0.96	1.26 - i4.33	3.94 - i1.51	3.96 - i1.07	8.93 - i2.96	4.28 + i2.81

Besides the poles in T-matrix, the ratio of $\pi_1(1600)$ decay into $f_1(1285)\pi$ and $\eta'\pi$ can be evaluated via $a_1 - \pi$ mixing, which is similar to the one in Fig. 1, where the predicted ratio is

$$\mathcal{R}_1 = \left(3.92^{+0.38}_{-0.31}\right)^A, \left(4.76^{+0.31}_{-0.28}\right)^B$$

and the one listed in PDG is 3.80 ± 0.78 .

Scattering in I = 1/2 sector

In $f_1K - K_1(1270)\eta$ ($\Gamma_i = 0$) coupled channel scattering may relate to the jump around 1770 MeV in ϕK^+ invariant mass distribution in $B \to J/\psi \phi K$ [1, 2].

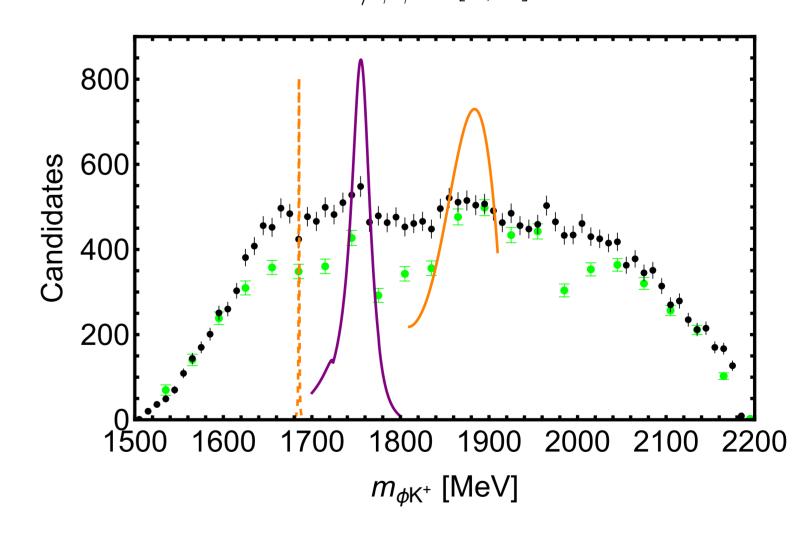


Figure 2. In set-B, b_1K , $K_1(1270)\eta - f_1K$ and $K_1(1270)\eta - h_1(1415)K$

References

- [1] R. Aaij et al. Amplitude analysis of $B^+ \to J/\psi \phi K^+$ decays. Phys. Rev. D, 95(1):012002, 2017.
- [2] R. Aaij et al. Observation of New Resonances Decaying to $J/\psi K^+$ and $J/\psi \phi$. Phys. Rev. Lett., 127(8):082001, 2021.
- [3] M. Ablikim et al. Observation of an isoscalar resonance with exotic $J^{PC}=1^{-+}$ quantum numbers in $J/\psi \to \gamma \eta \eta'$. 2 2022.
- [4] H.-Y. Cheng. Revisiting Axial-Vector Meson Mixing. Phys. Lett. B, 707:116–120, 2012.
- [5] X.-K. Dong, Y.-H. Lin, and B.-S. Zou. Interpretation of the η_1 (1855) as a KK₁(1400) + c.c. molecule.