Prediction of a narrow 0^{--} **exotic hadronic state**

Teng Ji Based on T. Ji, X.-K. Dong, F.-K. Guo and B.-S. Zou, arXiv:2205.10994, accepted by PRL. Institute of Theoretical Physics, Chinese Academy of Sciences University of Chinese Academy of Sciences

Abstract

Lots of charmonium-like structures have been observed in the last two decades. Most of them have quantum numbers that can be formed by a pair of charm and anticharm quarks, thus it is difficult to unambiguously identify the exotic ones among them. By exploiting heavy quark spin symmetry, we present a robust prediction of the hadronic molecular scenario, where the $\psi(4230), \psi(4360)$ and $\psi(4415)$ are identified as $D\bar{D}_1, D^*\bar{D}_1$ and $D^*\bar{D}_2^*$ bound states, respectively. We show that a flavor-neutral charmoniumlike exotic state with quantum numbers $J^{PC} = 0^{--}$, denoted as $\psi_0(4360)$, should exist as a $D^*\bar{D}_1$ bound state. The mass and width of the $\psi_0(4360)$

Method

Figure 2: Left: An illustration of the three-body cuts (vertical dotted lines)

should exist as a $D^{-}D_{1}$ bound state. The mass and width of the $\psi_{0}(4360)$ are predicted to be (4366 ± 18) MeV and less than 10 MeV, respectively. The $\psi_{0}(4360)$ is significant in two folds: no 0⁻⁻ hadron has been observed so far, and a study of this state will enlighten the understanding of the mysterious vector mesons between 4.2 and 4.5 GeV, as well as the nature of previously observed exotic Z_{c} and P_{c} states. We propose that such an exotic state can be searched for in $e^{+}e^{-} \rightarrow \eta\psi_{0}(4360)$ and uniquely identified by measuring the angular distribution of the outgoing η meson.

Background

introduced by the simultaneous onshellness of the intermediate particles. **Right**: The cuts encountered in the $D^*\bar{D}_1$ system.

Results

Figure 3: The best fitting for the single-channel (left) and coupled-channel (right) cases whose $c_V = 0.50, c_P = 0.18$

Table 2: Pole positions relative to the $D^*\overline{D}_1$ threshold in units of MeV with

- Exotic quantums number such as $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}$.
- Some of 1⁻⁺ have been observed such as $\pi_1(1400), \pi_1(1600), \eta_1(1855).$
- No 0⁻⁻ has been observed yet.

Method

Table 1: The hadronic molecules considered here and their possible experi-mental candidates. The masses with † are the experimental values.

Molecule	Components	J^{PC}	Candidates	Mass (GeV)	E_B MeV
$\psi(4230)$	$\frac{1}{\sqrt{2}}(D\bar{D}_1 - \bar{D}D_1)$	1	$\psi(4230)$	$4.220 \pm 0.015^{\dagger}$	67 ± 15
$\psi(4360)$	$\frac{1}{\sqrt{2}}(D^*\bar{D}_1 - \bar{D}^*D_1)$	1	$\psi(4360)$	$4.368 \pm 0.013^{\dagger}$	62 ± 14
$\psi(4415)$	$\frac{1}{\sqrt{2}}(D^*\bar{D}_2 - \bar{D}^*D_2)$	1	$\psi(4415)$	$4.421 \pm 0.004^{\dagger}$	49 ± 4
$\psi_0(4360)$	$\frac{1}{\sqrt{2}}(D^*\bar{D}_1+\bar{D}^*D_1)$	0	_	_	_

 $c_V = 0.50, c_P = 0.18$ from the single *t*-channel fitting.

_	System	1		0		
_	<i>t</i> -channel	-63.5 ± 13.8		-72.4 ± 17.4		
_	g_S	g_{S0}	g_{S1}	g_{S0}	g_{S1}	
_	C_2	-61.5 - 3.5i	-61.5 - 9.2i	-70.0 - 3.5i	-70.0 - 8.9i	
_	$C_1\&C_2$	-65.8 - 6.6i	-73.1 - 14.2i	-65.8 - 0.30i	-59.4 - 1.1i	

We predict $m_{\psi_0} = 4366 \pm 18$ MeV and $\Gamma_{\psi_0} < 10$ MeV.

Experimental Search

- The only channel for $\psi_0(4360)$ production in e^+e^- annihilation at $\sqrt{s} \sim 5$ GeV is *P*-wave $\eta \psi_0(4360)$.
- Hard to be distinguished from $\eta \psi(4360)$ with only invariant mass distribution of, e.g., $D\bar{D}^*$.
- Angular distribution is necessary.

About the presenter (Teng Ji)

- 2014 2018, undergraduate student, East China University of Science and Technology;
- 2018 , graduate student, Institute of Theoretical Physics, CAS.
 Email: jiteng@itp.ac.cn

Figure 4: Angular distribution of $e^+e^- \to \eta \psi_{(0)}$. θ is the angle between the outgoing η and initial e^+e^- beam.

- BaBar and Belle, e⁺e⁻ collision, ISR or B decay.
 LHCb, pp collision.
- BEPCII, which will be upgraded to about 5.6 GeV.

