The 13th International Workshop on e+e- collisions from Phi to Psi

Contribution ID: 105

Prediction of a narrow exotic hadronic state with quantum numbers J^{PC}=0^{-}

Wednesday, 17 August 2022 18:35 (10 minutes)

Lots of charmonium-like structures have been observed. Most of them share the same quantum numbers with conventional charmonium states, with exceptions of those with an electric charge and/or strangeness. We show that a neutral and zero-strangeness charmonium-like exotic state with quantum numbers $J^{PC} = 0^{--}$, denoted as $\psi_0(4360)$, is a robust prediction in the hadronic molecular scenario, where the $\psi(4230), \psi(4360)$ and $\psi(4415)$ are identified as $D\bar{D}_1, D^*\bar{D}_1$ and $D^*\bar{D}_2^*$ bound states, respectively; the mass and width are predicted to be (4366 ± 18) MeV and less than 10 MeV, espectively. The interactions are calculated by the *t*-channel vector and pseudoscalar meson exchanges assisted by heavy quark spin symmetry. The coupled-channel effects and the *u*-channel pion exchange including full 3-body effects of the $D^*\bar{D}^*\pi$ intermediate states are carefully examined. The $\psi_0(4360)$ is significant in two folds: no 0^{--} hadron has been observed so far, and a study of this state will enlighten the understanding of the mysterious vector mesons between 4.2 and 4.5 GeV. We propose that such an exotic state can be searched for in $e^+e^- \rightarrow \eta\psi_0(4360)$ and uniquely identified by measuring the angular distribution of the outgoing η meson.

Category

poster

Primary authors: ZOU, Bingsong (ITP, CAS); GUO, Feng-Kun (ITP, CAS); JI, Teng; DONG, Xiang-Kun (ITP, CAS)

Presenter: JI, Teng

Session Classification: Posters

Track Classification: Posters