Search for The cLFV

by Muon to Electron Conversion on COMET

Yao Zhang¹, Ye Yuan^{1,2}, Haibo Li^{1,2}, Tianyu Xing^{1,2} on behalf of COMET collaboration

- Institute of High Energy Physics, CAS, Beijing, China
- University of Chinese Academy of Sciences

中国科学院高能物理研究所

Institute of High Energy Physics, Chinese Academy of Sciences

Introduction

OME

Charged Lepton Flavor Violation

The COMET(COherent Muon Electron Transition) experiment located in the Japan Proton Accelerator Research Complex (J-PARC) in Tokai, Japan.

16+ countries. 39+ University or institute, ~200 collaborators

The COMET Experiment

COMET Proton Beam

- Bunched SX proton beam at 8 GeV. • Extremely purely pulsed beam
- Extinction factor < $O(10^{-10})$)
- Two-staged approach:
- Phase I, 3.2 kW beam
- Phase II, 56 kW beam

COMET Muon Beam

• 90 degree and long muon transport solenoid

What to Measure

The ratio of muon to electron conversion to the total rate of muon captures by nuclei.

Coherent Conversion

The experimental signature is a mono-Nuclear Recoil energetic of 105MeV electron Clean field to search for new physics!

Muon CLFV Search History

Graphite as pion production target Search for μ -e conversion with SES of **3.1**×10⁻¹⁵

Background measurements and Beam characterization

Detectors drift chamber +Straw Tracker + ECAL

COMET Phase α : engineering run

• Estimate the number of muons(and π^{\pm} , e^{\pm}) reaching

COMET Phase-II Production target & Stopping target & the capture magnet letector system

Tungsten alloy as pion production target

Search of μ-e conversion with SES

2.6×**10**⁻¹⁷ which is 10,000 better

than the current limit. The study to

reach SES ~10⁻¹⁸ is in progress.

12µm thin straw-tube tracker

uon-Target Soleng

Detector Slend

LYSO calorimeter providing trigger,

Detectors

TOF and PID

The bird view of muon beam intensity muon transport section and stopped

Yield (per proton):	After muon transport section	Stopped in muon target
Muons	5.0×10^{-3}	4.7×10^{-4}
Pions	3.5×10^{-4}	3.0×10^{-6}

Phase-I Signal and Background

Background is estimated with Monte Carlo studies. TDR* was published

COMET Phase-I Single Event Sensitivity(S.E.S) = 3.1 x 10⁻¹⁵@

- Total acceptance of signal is **0.041**
- At momentum window $p_e = 103.6 \sim 106 MeV/c$, yielding a signal acceptance of 0.93
- **Total excepted background= 0.032** with 99.99% CRV efficiency
- **Average trigger rate** ~10kHz trigger with drift chamber hits

Charged particle emission after muon capture

< 0.00

 $\sim ($

 $\sim ($

 ~ 0

 $\sim ($

COMET Status

All proton beam-line instruments were installed.

Phase α target

Phase-I target

Solenoid magnets

Drift chamber, CTH and muon stopping target is under test

Analysis and simulation is ongoing

* Beam electrons 0.9Prompt Beam * Muon decay in flight 0.99* Pion decay in flight Geometrical acceptance + Track quality cuts 0.18* Other beam particles 0.93All (*) Combined ≤ 0.0038 0.3Radiative pion capture 0.00280.041Neutrons $\sim 10^{-9}$ Delaved Beam Beam electrons Muon decay in flight Event selection efficiency Pion decay in flight Radiative pion capture Anti-proton induced backgrounds 0.0012Cosmic rays < 0.01Others Total 0.032† This estimate is currently limited by computing resources Background estimation

Summary

COMET search for μ -e conversion with sensitivities **3.1 x 10⁻¹⁵** for Phase-I and **< 2.6 x 10⁻¹⁷** for Phase-II

COMET Phase α engineering run is going to start in JFY 2022

COMET cryogenics system started successfully

Capture solenoid will be installed after Phase α

Detectors, DAQ & trigger, analysis, simulation is ready