

Towards the establishment of the $J^{P(C)} = \mathbf{1}^{-(+)}$ hybrid nonet

Qiang Zhao

Division of Theoretical Physics

Institute of High Energy Physics, CAS

zhaoq@ihep.ac.cn

Based on L. Qiu and Q. Zhao, Chin. Phys. C 46, 051001 (2022) [2202.00904[hep-ph]]

The 13th International Workshop on e^+e^- Collisions From Phi to Psi, Aug. 15-18, 2022

Outline

- 1. The lowest hybrid nonet and phenomenology
- 2. Production of the $J^{P(C)}=\mathbf{1}^{-(+)}$ hybrid nonet in J/ψ radiative decays
- 3. Predictions for $J/\psi \rightarrow VH$
- 4. Discussions and summary

1. The lowest hybrid nonets and phenomenology

Conventional QM states: Quantum numbers accessible by the quark-antiquark scenario:

States in **natural spin-parity**: if $P = (-1)^{L+1} = (-1)^{J}$.

Then with S = 1, one has $CP = (-1)^{(L+S)+(L+1)} = +1$

 \rightarrow Mesons with **natural spin-parity** but CP = -1 will be forbidden:

Unnatural: $0^{-+}, 1^{+-}, 2^{-+}, 3^{+-}, \dots$

Exotic mesons:

Quantum numbers cannot be accessed by the spin-orbital couplings between a pair of $q\bar{q}$.

A brief introduction to the flux-tube model

- Lowest gluon fields generate adiabatic potential on which the quark motion can be described.
- The flux tube may be excited on which the quark motion in the adiabatic potential of such excited gluon field configurations will give access to hybrid states.
- The decays of both conventional and exotic hadrons can be well described by the flux tube breaking mechanism.

Flux tube model Hamiltonian:

$$H = H_{\text{quarks}} + H_{\text{flux tube}},$$

$$H_{\text{quarks}} = -\frac{1}{2m_q} \vec{\nabla}_q^2 - \frac{1}{2m_{\bar{q}}} \vec{\nabla}_{\bar{q}}^2 + V_{q\bar{q}},$$

$$H_{\text{fluxtube}} = b_0 R + \sum_{n} \left[\frac{p_n^2}{2b_0 a} + \frac{b_0}{2a} (y_n - y_{n+1})^2 \right]$$

N. Isgur and J. Paton, PLB124 (1983) 247-251; PRL54 (1985) 869; PRD31 (1985) 2910

Adiabatic gluonic potential for the gluonlump in the flux tube model compared with the LQCD simulation

K.J. Juge et al. Nucl. Phys. Proc. Suppl. 63 (1998) 326;G.S. Bali and A. Pineda, PRD69 (2004) 094001;C.A. Meyer and E.S. Swanson, PPNP 82 (2015) 21E. Klempt and A. Zaitsev, Phys. Rept. 454, 1-202 (2007)

Quantum numbers of the hybrid mesons:

- Parity: $P = \epsilon(-1)^{L+\Lambda+1}$
- Charge conjugation: $C = \epsilon \eta (-1)^{L+\Lambda+S}$ where $\eta \equiv (PC)_g$; $\Lambda (= 0,1,2,... \rightarrow \Sigma, \Pi, \Delta,...)$ is the projection of the gluonic angular momentum onto the $q\bar{q}$ axis.
- The adiabatic gluonic potential for the gluonlump is denoted as Λ_{η}^{Y} ($Y = \pm$ is the so-called Y-parity).

J^{PC}	Mass (GeV)	Adiabatic surface quantum numbers
1+-	0.87(15)	Σ_u^- , Π_u
1	1.25(16)	$arPsi_g, arSigma_g^{+\prime}$
2	1.45(17)	$\Sigma_{ m g}^-$, $ec{\Pi}_{ m g}'$, $\Delta_{ m g}$
2+-	1.86(19)	$\Sigma_u^+, \Pi_u', \Delta_u$
3+-	1.86(18)	$\Sigma_u^{-\prime}$, $\Pi_u^{\prime\prime}$, Δ_u^{\prime} i, Φ_u
0^{++}	1.98(18)	$\Sigma_g^{+\prime\prime}$
4	2.13(18)	$\Sigma_g^{-\prime}$, Π_g'' , Δ_g' i, Φ_g , Γ_g
1 ⁻⁺	2.15(20)	$\Sigma_{u}^{+\prime},\Pi_{u}^{\prime\prime\prime}$

Lowest hybrid in the flux-tube model

Collinear mode

Transverse mode

$$J_q^{P(C)} = 0^{-(+)}$$
 $J_g = S_g + L_g$,
 $J_g^{PC} = 1^{+-}$
 $J_g^{PC} = 1^{+-}$

Recent Compass confirmation of $\pi_1(1600)$

- $\pi_1(1600)$ has been seen in $\eta'\pi$, $f_1(1285)\pi$, $b_1(1235)\pi$, and $\rho\pi$ in various experiments.
- The Compass results favor a single $\pi_1(1600)$, and do not support the existence of $\pi_1(1400)$.

Recent BESIII observation of $\eta_1(1855)$

- $\eta_1(1855)$ is seen in $J/\psi \to \gamma \eta \eta'$ at BESIII with $m_{\eta_1}=(1855\pm 9^{+6}_{-1})$ MeV and $\Gamma_{\eta_1}=(188\pm 18^{+3}_{-8})$ MeV.
- Only one $(I = 0, I^{PC} = 1^{-+})$ state is seen.

Some theoretical efforts before the observation of $\eta_1(1855)$:

- D. Horn and J. Mandula, Phys. Rev. D17, 898 (1978)
- T. Barnes and F. E. Close, Phys. Lett. B116, 365-368 (1982)
- N. Isgur and J. Paton, PLB124 (1983) 247-251; PRL54 (1985) 869; PRD31 (1985) 2910
- T. Barnes, F. E. Close and E. S. Swanson, Phys. Rev. D52, 5242-5256 (1995)
- P. R. Page, E. S. Swanson and A. P. Szczepaniak, Phys. Rev. D59, 034016 (1999)
- F. E. Close and J. J. Dudek, Phys. Rev. D70, 094015 (2004)
- S. L. Zhu, Phys. Rev. D60, 097502 (1999)
- P. Z. Huang, H. X. Chen and S. L. Zhu, Phys. Rev. D83, 014021 (2011)
- H. X. Chen, Z. X. Cai, P. Z. Huang and S. L. Zhu, Phys. Rev. D83, 014006 (2011)
- X. Zhang and J. J. Xie, Chin. Phys. C44, no.5, 054104 (2020)
- J. J. Dudek et al. [Hadron Spectrum], Phys. Rev. D88, no.9, 094505 (2013)
- J. J. Dudek, Phys. Rev. D84, 074023 (2011)
- G. S. Bali and A. Pineda, Phys. Rev. D69, 094001 (2004)
- C.A. Meyer and E.S. Swanson, PPNP 82 (2015) 21
- E. Klempt and A. Zaitsev, Phys. Rept. 454, 1-202 (2007)

Some theoretical efforts after the observation of $\eta_1(1855)$:

- X. K. Dong, Y. H. Lin and B. S. Zou, Sci. China Phys. Mech. Astron. 65, no.6, 261011 (2022)
- H. X. Chen, N. Su and S. L. Zhu, Chin. Phys. Lett. 39, no.5, 051201 (2022)
- V. Shastry, C. S. Fischer and F. Giacosa, [arXiv:2203.04327 [hep-ph]].
- F. Yang and Y. Huang, [arXiv:2203.06934 [hep-ph]]
- B. D. Wan, S. Q. Zhang and C. F. Qiao, [arXiv:2203.14014 [hep-ph]].
- X. Y. Wang, F. C. Zeng and X. Liu, Phys. Rev. D 106, no.3, 036005 (2022)
- X. Jiang, Y. Chen, M. Gong, Z. Liu, C. Shi and W. Sun, [arXiv:2207.04694 [hep-lat]]
- X. Zhuang, B. C. Ke, Y. Teng and Q. S. Liu, [arXiv:2208.05442 [hep-ph]]

Hybrid nonet and Gell-Mann-Okubo relation

Flavor-blindness of the strong interaction

$$\pi_{1}^{+}, \, \pi_{1}^{-}, \, \pi_{1}^{0} : u\bar{d}\tilde{g}, \, d\bar{u}\tilde{g}, \, \frac{1}{\sqrt{2}}(u\bar{u} - d\bar{d})\tilde{g}$$

$$\eta_{1}^{(8)} : \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} - 2s\bar{s})\tilde{g}$$

$$\eta_{1}^{(1)} : \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s})\tilde{g}$$

$$K^{*+}, \, K^{*0}, \, K^{*-}, \, \bar{K}^{*0} : u\bar{s}\tilde{g}, \, d\bar{s}\tilde{g}, \, s\bar{u}\tilde{g}, \, s\bar{d}\tilde{g}$$

• Flavor octet and singlet mixing in the I=0 sector

• Gell-Mann-Okubo relation:

$$\tan \theta = \frac{4m_{K^*} - m_{\pi_1} - 3m_{\eta_{1L}}}{2\sqrt{2}(m_{\pi_1} - m_{K^*})}$$

and
$$(m_{\eta_{1\text{H}}} + m_{\eta_{1\text{L}}})(4m_{K^*} - m_{\pi_1}) - 3m_{\eta_{1\text{H}}} m_{\eta_{1\text{L}}}$$

$$= 8m_{K^*}^2 - 8m_{K^*} m_{\pi_1} + 3m_{\pi_1}^2 \; ,$$

Note: With the input of m_{π_1} and $\eta_1(1855)$ it is still insufficient for the determination of θ , $m_{\eta_{1L}}/m_{\eta_{1H}}$, m_{K^*} .

$$\begin{pmatrix} \eta_{1L} \\ \eta_{1H} \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \eta_1^{(8)} \\ \eta_1^{(1)} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} n\bar{n}\tilde{g} \\ s\bar{s}\tilde{g} \end{pmatrix}$$

$$n\bar{n} \equiv (u\bar{u} + d\bar{d})/\sqrt{2} \qquad \text{Ideal mixing: } \theta = 0^{\circ}, \alpha = \arctan(\sqrt{2}) \approx 54.7^{\circ}$$

Decays of the $1^{-(+)}$ hybrid nonet into pseudoscalar meson pair

Decays via the quark pair creation (QPC) model

$$\tilde{g} \rightarrow (u\bar{u} + d\bar{d} + s\bar{s})/\sqrt{3}$$

Longitudinal transition mode:

$$\mathcal{M}_a = \langle (q_1 \bar{q}_4)_{M_1} (q_3 \bar{q}_2)_{M_2} | \hat{V}_L | q_1 \bar{q}_2 \tilde{g} \rangle \equiv g_1 | \mathbf{k} |$$

Collinear process

Transverse transition mode:

$$\mathcal{M}_b = \langle (q_1 \bar{q}_2)_{M_1} (q_3 \bar{q}_4)_{M_2} | \hat{V}_T | q_1 \bar{q}_2 \tilde{g} \rangle \equiv g_2 | \mathbf{k} |$$

Recoiling process: Only contribute to the production of M_2 as an isoscalar.

- For a conventional $q\overline{q}$ meson decay, $M_a\gg M_h$.
- For a hybrid meson decay, $M_a \simeq M_h$.

Table 1. Coupling constants for the $1^{-(+)}$ hybrid nonet decays into pseudoscalar meson pairs. The couplings for the negative charge states are implied. The SU(3) flavor symmetry breaking parameter R is also included.

Processes	Couplings
$\pi_1^0 \to \eta \pi^0$	$\frac{1}{\sqrt{2}}(g_1+g_2)\cos\alpha_P - Rg_2\sin\alpha_P$
$\pi_1^0 \to \eta' \pi^0$	$\frac{1}{\sqrt{2}}(g_1+g_2)\sin\alpha_P + Rg_2\cos\alpha_P$
$\pi_1^+ \to \eta \pi^+$	$\sqrt{2}(g_1+g_2)\cos\alpha_P - Rg_2\sin\alpha_P$
$\pi_1^+ o \eta' \pi^+$	$\sqrt{2}(g_1+g_2)\sin\alpha_P + Rg_2\cos\alpha_P$
$\eta_{1L} o \eta \eta'$	$\frac{1}{2}(g_1+g_2)\sin 2\alpha_P(\cos\alpha+R\sin\alpha)+g_2\cos 2\alpha_P(R\cos\alpha-\sin\alpha)$
$\eta_{1 ext{H}} o \eta \eta'$	$\frac{1}{2}(g_1+g_2)\sin 2\alpha_P(\sin\alpha-R\cos\alpha)+g_2\cos 2\alpha_P(R\sin\alpha+\cos\alpha)$
$K^{*+} \rightarrow K^+ \pi^0$	$\frac{1}{\sqrt{2}}g_1$
$K^{*+} \to K^0 \pi^+$	g_1
$K^{*+} \to K^+ \eta$	$g_1\left(\frac{1}{\sqrt{2}}\cos\alpha_P - R\sin\alpha_P\right) + g_2(\sqrt{2}\cos\alpha_P - R\sin\alpha_P)$
$K^{*+} \rightarrow K^+ \eta'$	$g_1\left(\frac{1}{\sqrt{2}}\sin\alpha_P + R\cos\alpha_P\right) + g_2(\sqrt{2}\sin\alpha_P + R\cos\alpha_P)$

- $\alpha_P \simeq 42^\circ$ is the mixing angle between η and η' .
- $R \simeq f_{\pi}/f_{K} \simeq 0.93$ indicates the SU(3) flavor symmetry breaking effects in the production of the $s\bar{s}$ pair.
- g_1, g_2, α are the parameters to be determined.

Note: η_{1L} and η_{1H} decays into $\pi\pi$ and $K\overline{K}$ are forbidden by the Bose symmetry and G-parity conservation. They can only access $\eta\eta'$ via the octet and singlet mixing.

2. Production of the $J^{P(C)}=\mathbf{1}^{-(+)}$ hybrid nonet in J/ψ radiative decays

The P-wave coupling for three vectors can be described as:

$$\mathcal{L}_{VVV} = i g_{VVV} (V_{1,\nu} \overleftrightarrow{\partial^{\mu}} V_2^{\nu} V_{3,\mu} + V_{1,\mu} V_2^{\nu} \overleftrightarrow{\partial^{\mu}} V_{3,\nu} + V_{2,\mu} V_3^{\nu} \overleftrightarrow{\partial^{\mu}} V_{1,\nu})$$

With the real photon the Lagrangian reduces to

$$\mathcal{L}_{J/\psi\to\gamma\eta_1} = ig_{J/\psi\eta_1\gamma} F_{\mu\nu} V^{\mu}_{J/\psi} V^{\nu}_{\eta_1}$$

where
$$F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

By defining the production potential for the hybrid via the J/ψ radiative decay, i.e.

$$g_0 \equiv \langle (q\bar{q}\tilde{g})_{1^{-+}} | \hat{H}_{em} | J/\psi \rangle$$

We have

$$g_{J/\psi\eta_{1L}\gamma} = g_0(\sqrt{2}\cos\alpha - R\sin\alpha)$$
$$g_{J/\psi\eta_{1L}\gamma} = g_0(\sqrt{2}\sin\alpha + R\cos\alpha)$$

The relative production rate for η_{1L} and η_{1H} can be obtained

$$\begin{split} R_{\eta_{\text{IL}}/\eta_{\text{IH}}} &= \left(\frac{|\boldsymbol{q}_{\text{L}}|}{|\boldsymbol{q}_{\text{H}}|}\right)^{3} \frac{(\sqrt{2}\cos\alpha - R\sin\alpha)^{2}}{(\sqrt{2}\sin\alpha + R\cos\alpha)^{2}} \frac{m_{\eta_{\text{IH}}}^{2}(m_{J/\psi}^{2} + m_{\eta_{\text{IL}}}^{2})}{m_{\eta_{\text{IL}}}^{2}(m_{J/\psi}^{2} + m_{\eta_{\text{IH}}}^{2})} \\ &\times \left(\frac{|\boldsymbol{k}_{\text{L}}|}{|\boldsymbol{k}_{\text{H}}|}\right)^{3} \left(\frac{\Gamma_{\text{H}} m_{\eta_{\text{IH}}}}{\Gamma_{\text{L}} m_{\eta_{\text{IL}}}}\right)^{2} \\ &\times \frac{\left[(1+\delta)\tan2\alpha_{P}(\cos\alpha + R\sin\alpha) + 2\delta(R\cos\alpha - \sin\alpha)\right]^{2}}{\left[(1+\delta)\tan2\alpha_{P}(\sin\alpha - R\cos\alpha) + 2\delta(R\sin\alpha + \cos\alpha)\right]^{2}} \end{split}$$

The relative production rate for η_{1L} and η_{1H} in $J/\psi \to (\gamma \eta_{1L}/\gamma \eta_{1H}) \to \gamma \eta \eta'$ can be expressed as

$$R_{\eta_{1L}/\eta_{1H}} = \left[\left(\frac{|\boldsymbol{q}_{L}|}{|\boldsymbol{q}_{H}|} \right)^{3} \frac{(\sqrt{2}\cos\alpha - R\sin\alpha)^{2}}{(\sqrt{2}\sin\alpha + R\cos\alpha)^{2}} \frac{m_{\eta_{1H}}^{2}(m_{J/\psi}^{2} + m_{\eta_{1H}}^{2})}{m_{\eta_{1L}}^{2}(m_{J/\psi}^{2} + m_{\eta_{1H}}^{2})} \times \left(\frac{|\boldsymbol{k}_{L}|}{|\boldsymbol{k}_{H}|} \right)^{3} \left(\frac{\Gamma_{H}m_{\eta_{1H}}}{\Gamma_{L}m_{\eta_{1L}}} \right)^{2} \right] \times \frac{\left[(1 + \delta)\tan2\alpha_{P}(\cos\alpha + R\sin\alpha) + 2\delta(R\cos\alpha - \sin\alpha) \right]^{2}}{\left[(1 + \delta)\tan2\alpha_{P}(\sin\alpha - R\cos\alpha) + 2\delta(R\sin\alpha + \cos\alpha) \right]^{2}}$$

Note that the phase space factor actually enhances the ratio.

$$\delta \equiv g_2/g_1 \qquad \qquad \qquad \begin{array}{c} H \\ \hline \\ M_2 \\ \hline \\ H \\ \hline \\ (a) \end{array} \qquad \begin{array}{c} H \\ \hline \\ M_2 \\ \hline \\ (a) \end{array} \qquad \begin{array}{c} H \\ \hline \\ Conventional \ meson: \ |\delta| \ll 1 \end{array}$$

• Mixing angle α is correlated with the undetermined masses of K^* and η_{1L}/η_{1H} .

Two schemes for the nonet

Correlation between α and m_{K^*}

Hybrid nonet

Scheme-I:

Assuming that $\eta_1(1855)$ is the higher state, η_{1H} , and $K^*(1680)$ is the strange partner with $m_{K^*} = 1718 \pm 18$ MeV. We have $m_{\eta_{1L}} = 1712.5 \pm 8.7$ MeV.

Imposing the experimental observation,

$$R_{\eta_{1L}/\eta_1(1855)} \equiv \frac{BR(J/\psi \to \gamma \eta_{1L} \to \gamma \eta \eta')}{BR(J/\psi \to \gamma \eta_1(1855) \to \gamma \eta \eta')} < 10\%$$

$$\int \alpha = 30^{\circ} \pm 13^{\circ}$$
$$\delta \simeq -1.0$$

Scheme-II:

Assuming that $\eta_1(1855)$ is the lower state, η_{1L} , one finds that $K^*(1680)$ is no longer suitable to be the strange partner. We thus impose the experimental observation as a constraint:

$$R_{\eta_{1H}/\eta_1(1855)} \equiv \frac{BR(J/\psi \to \gamma \eta_{1H} \to \gamma \eta \eta')}{BR(J/\psi \to \gamma \eta_1(1855) \to \gamma \eta \eta')} < 10\%$$

3. Predictions for $J/\psi \rightarrow VH$

The coupling for $J/\psi \rightarrow VH$ can be parametrized as:

$$g_P \equiv \langle [q\bar{q}]_1 [q\bar{q}\tilde{g}]_{1^{-+}} | \hat{V}_P | J/\psi \rangle$$

Then, the coupling constants for different decay channels can be expressed as:

$$g_{J/\psi\rho^{+}\pi_{1}^{-}} = g_{P},$$

$$g_{J/\psi\omega\eta_{1L}} = g_{P}\cos\alpha,$$

$$g_{J/\psi\omega\eta_{1H}} = g_{P}\sin\alpha,$$

$$g_{J/\psi\phi\eta_{1L}} = -g_{P}R^{2}\sin\alpha,$$

$$g_{J/\psi\phi\eta_{1H}} = g_{P}R^{2}\cos\alpha,$$

$$g_{J/\psi\phi\eta_{1H}} = g_{P}R^{2}\cos\alpha,$$

$$g_{J/\psiK^{*+}K_{H}^{*-}} = g_{P}R,$$

 $\rho^{+}\pi_{1}^{-}:\omega\eta_{1L}:\omega\eta_{1H}:\phi\eta_{1L}:\phi\eta_{1H}:K^{*+}K_{H}^{*-}$ $=1:\cos^{2}\alpha:\sin^{2}\alpha:R^{4}\sin^{2}\alpha:R^{4}\cos^{2}\alpha:R^{2}$

4. Discussions and summary

- The gluonlumps will finally convert into quark-antiquark pairs.
 Phenomenologically, how to distinguish these effective degrees of freedom from other scenarios?
- ➤ The hybrid also favors strong couplings to an axial vector plus a pseudoscalar [Burns, Close and Dudek, PRD 77 (2008) 034008]

- Why only one state $\eta_1(1855)$ is seen? Are we expecting its partner in the nonet?
- ▶ If $\eta_1(1855)$ is associated with $K_1(1400)\overline{K}$, should we expect to have $\eta_1(1763)$ associated with $K_1(1270)\overline{K}$?
- \triangleright Broad width of $K_1(1400)$ may cause problems in the molecular scenario.
- The width of $\eta_1(1855)$ is about 188 MeV. What are the dominant decay channels?
- In the hybrid scenario $\eta_1(1855)$ cannot be a pure $s\bar{s}\tilde{g}$ or $n\bar{n}\tilde{g}$. The S-wave decays into vector and pseudoscalar pairs may not be suppressed [Close and Dudek, PRD70 (2004) 094015, The 'Forbidden' decays of hybrid mesons to pi rho can be large]
- More open questions ...

Thanks for your attention!