

Search for Lepton Flavor Violation in $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$ at BABAR

Nafisa Tasneem On behalf of the BaBar Collaboration Aug 15 - 19, 2022

ntasneem@stfx.ca ntasneem@uvic.ca

Outline of the Talk

- Charged Lepton Flavor Violation
- Theoretical Expectations and Experimental Limit
- Asymmetric PEP-II Collider and BaBar Detector
- Data, MC and Data Driven Background
- Analysis Strategy
 - Signal and Background Characteristic
 - > A Selection Criterion
 - Validation of Using the Data Driven Background
- Results and Indication for New Physics
- Conclusion

Charged Lepton Flavour Violation

- Charged Lepton Flavour Violation is a transition among e, μ, τ that doesn't conserve lepton family number.
- In Standard Model, Lepton Flavour is conserved for zero degenerate v masses and now we have clear indication that v's have finite mass.
- Example of lepton flavour conservation is a muon decay: $\mu^- \rightarrow e^- \overline{\nu_e} \nu_{\mu}$

 In the charged lepton sector, Lepton Flavor Violation is heavy suppressed in the Standard Model

 $l_{\alpha} \rightarrow l_{\beta} \approx O(10^{-54})$

- Various BSM models such as Supersymmetry, Compositeness, Heavy Neutrino, Leptoquarks, Heavy Z', Anomalous boson Coupling, Higgs/top loops etc. predict CLFV.
- A clear experimental signature = "New Physics"

• Example of charged lepton flavour violation is a neutrinoless muon decay: $\mu^- \rightarrow e^-\gamma$

Opportunity to search for the New Physics!!!

$$\begin{split} \Gamma(\mu \to e\gamma) \approx \frac{G_F^2 m_{\mu}^5}{192\pi^3} & \left(\frac{\alpha}{2\pi}\right) & sin^2 2\theta sin^2 \left(\frac{1.27\Delta m^2}{M_W^2}\right) \\ \mu - decay & \gamma - vertex & \vartheta - oscillation \\ \approx \frac{G_F^2 m_{\mu}^5}{192\pi^3} & \left(\frac{3\alpha}{32\pi}\right) & \left(\frac{\Delta m_{23}^2 s_{13} c_{13} s_{23}}{M_W^2}\right)^2 \\ \text{with } \Delta \sim 10^{-3} eV^2, M_W \sim O(10^{11}) eV \approx O(10^{-54}) \end{split}$$

Experimentally not measurable!!

Theoretical Expectations and Experimental Limit

• S.Nussinov, et. al. estimated that the contribution of the virtual $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$ to the $\mu \rightarrow eee$ rate would be reduced by approximately $M^2_{\mu}/(2 M^2_{\Upsilon})$ leading to a recalculated indirect bound: $BF(\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}) < 1 \times 10^{-3}$

[1] S.Nussinov, et. al. PRD 63 (2001)
[2] Bellgardt, et al., Nucl.Phys. B299 (1988)
[3] P.A. Zyla et al. (Particle Data Group)

Existing Measurements	Results	CL (%)	Collaboration	
$BF(\Upsilon(3S)\to e^\pm\tau^\mp)$	$< 4.2 \times 10^{-6}$	90	J.P. Lees et al. PR D89 111102 [BaBar Collaboration]	
$BF(\Upsilon(3S) \to \mu^{\pm}\tau^{\mp})$	< 3.1 × 10 ⁻⁶	90		
$BF(\Upsilon(3S) \to \mu^{\pm}\tau^{\mp})$	< 20.3 × 10 ⁻⁶	95	Love et al. PRL 101, 201601 [CLEO Collaboration]	
$\mathrm{BF}(\Upsilon(3S) \to e^{\mp} \mu^{\pm})$	Reported		J. P. Lees et al. PR 128, 091804 (2022) [BaBar Collaboration] Published March 3, 2022.	

Data, MC Sample

Data Sample	On resonance (fb ⁻¹)	Off resonance (fb ⁻¹)	
Run 7 Y(3S)	27.9 = 27.0	2.62	
(Data)	+ (0.9 Blinded Analysis)	To validate the	
		systematic study	
Run 6 Y (4 <i>S</i>)	78.31	7.75	
Data driven	Systematic study	To validate the	
continuum	pre-selected as $e^{\pm}\mu^{\mp}$ and $\mu^{\pm}\mu^{\mp}$	systematic study	
background			
MC signal: $e^+e^- \rightarrow \Upsilon(3S) \rightarrow e^\pm \mu^\mp$: 103000 events			

Upsilon System: CUSB detector, CLEO Collaboration T. Bohringer et al., Phys. Rev. Lett. 44, 1111 (1980) and P. Finocchiaro et al., Phys. Rev. Lett. 45, 222 (1980)

Signal and Background Characteristics

- Optimized PID selection for $e^{\pm} \mu^{\mp}$ track
- $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$: Required two primary track signal of e^{\pm} and μ^{\mp}
- CM Momentum: $p_{e^{\pm}} \sim \frac{\sqrt{s}}{2} \sim E_B$ and $p_{\mu^{\pm}} \sim \frac{\sqrt{s}}{2} \sim E_B$ where E_B =Beam Energy in Centre of Mass System
- Angle between the two lepton tracks must satisfy $\theta_{12}^{CM} > 179^{\circ}$ to emerged as back-to-back.
- Energy deposit by μ^{\mp} track on the Electromagnetic Calorimeter (EMC) > 50 MeV
- EMC acceptance $24^{\circ} < \theta_{Lab} < 130^{\circ}$ etc.

Sample Background Event $e^-e^+ \rightarrow \tau^{\pm}\tau^{\mp} \rightarrow e^{\pm}\mu^{\mp} + 4\nu$

Final Selection Criterion

 $\frac{p_{\mu}}{E_B}$

(0,0)

– Plane

Selection Criteria: The lepton momenta must satisfy the condition which is defining a circle of radius $\left(\frac{p_e}{E_B} - 1\right)^2 + \left(\frac{p_{\mu}}{E_B} - 1\right)^2 = (0.1)^2 = 0.01$ Where, $p_{e^{\pm}, \mu^{\pm}} \sim \frac{\sqrt{s}}{2} \sim E_B$

Impact of each component of the selection on the signal efficiency, background and data

Selection criterion	Signal efficiency (%)	$\Upsilon(3S)$ BG	Continuum BG	Events in data
Preselection	80.20 ± 0.12	75516 ± 180	725003 ± 500	945 480
Optimized PID	50.74 ± 0.15	5180 ± 50	320910 ± 330	358 322
Two tracks in final state	23.54 ± 0.13	0	14.1 ± 2.2	18
Lepton momentum	26.84 ± 0.12	87 ± 6	253 ± 9	302
Back-to-back	24.02 ± 0.13	0.5 ± 0.5	36 ± 6	39
EMC acceptance	24.95 ± 0.13	0	13.5 ± 2.2	17
Energy on EMC	24.52 ± 0.13	0	16.9 ± 2.4	19
All criteria	23.42 ± 0.13	0	12.2 ± 2.1	15

- The first row provides information on the pre-selection of the events as $\Upsilon(3S) \rightarrow e^{\pm} \mu^{\mp}$.
- The last row provides information after applying all selection criteria.
- Rows 2-7 provides information when all requirements are applied except the criterion associated with the particular row.
- Third column represents the background events from $e^+e^- \rightarrow \Upsilon(3S)$ known as generic MC Background.
- Fourth column represents the background events from $e^+e^- \rightarrow \Upsilon(4S)$ known as data-driven Continuum Background.
- Event numbers in the third and forth columns are the luminosity-normalized.
- The last column gives the number of events in the 27 fb⁻¹ data sample after unblinding.
- We have added an additional uncertainty of ± 0.9 any potential peaking background from the $\Upsilon(3S)$ decays which estimate the background events 12.2 ± 2.3

Data Driven Continuum Background and MC Background

- For the systematic study we have used the data driven continuum background $e^+e^- \rightarrow \Upsilon(4S)$ of 78.31/fb pre-selected as $e^{\pm}\mu^{\mp}$ and $\mu^{\pm}\mu^{\mp}$
- Two major cuts (CM momentum cut and angle between two lepton tracks cut) were reversed to check the data/MC agreement.
- Disagreement arises due to uncertainties in PID, Tracking, kinematics, trigger etc.
- The difference in continuum background and MC background (in the energy band 6-8 GeV) was 1.2%

Final Invariant Mass Distribution of $e^{\pm}\mu^{\mp}$

After all selection criteria are applied

Summary: Background, Uncertainty, Candidate

Component value	Uncertainties by source	-
Signal efficiency: 0.2342	Lepton momentum cut: Back-to-back cut: All other cuts: MC statistics: Total N_{Υ} : 117.7 × 10 ⁶ ± 1.2 > BG: 12.2 ± 2.3 (19%)	$\begin{array}{c} 0.0026 \ (1.1\%) \\ 0.0028 \ (1.2\%) \\ 0.0003 \ (0.13\%) \\ \pm \ 0.0078 \ (3.3\%) \end{array}$

TABLE II. Summary of systematic uncertainties. The values of the efficiency, background, and number of $\Upsilon(3S)$ decays are presented in the first column and their uncertainties in the second column. The different contributions to the efficiency systematic uncertainties are also presented.

Results on Υ (3*S*) $\rightarrow e^{\pm}\mu^{\mp}$

- Data: $(27.0 \, fb^{-1})$
- Branching Fraction:

$$\frac{N_{\text{Candidate}} - N_{BG}}{\varepsilon_{sig} \times N_{\Upsilon}} \qquad (1.0 \pm 1.4_{stat(N_{Candidate})} \pm 0.8_{syst}) \times 10^{-7}$$

- Upper Limits with Confidence Level < 3.6 × 10⁻⁷ CLs Method of 90%:
 [J.Phys.G 28 (2002) 2693-2704]
- First reported experimental Branching Fraction and We report a limit several orders of magnitude more sensitive than this indirect limit.

Implication For New Physics

• A measurement of BF($\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$) can be used to place constraints on $\frac{g^2_{NP}}{\Lambda_{NP}}$ of new physics processes that include lepton flavour violation.

where, $\frac{g^2_{NP}}{\Lambda_{NP}} = \frac{\text{effective coupling of the new physics}}{\text{energy scale of the NP, given by the mass of the NP propagator.}}$

• Place constraints on $\frac{g^2_{NP}}{\Lambda_{NP}}$ of new physics processes that include lepton flavor violation using

BF($\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$) < 3.6 × 10⁻⁷ @ 90%CL

$$\left(\frac{g_{NP}^2}{\Lambda_{NP}}\right)^2 / \left(\frac{4\pi\alpha_{QED}Q_b}{M_{\Upsilon(3S)}}\right)^2 = \frac{BF(\Upsilon(3S) \to e\mu)}{BF(\Upsilon(3S) \to \mu\mu)}$$
$$\Lambda_{NP}/g_{NP}^2 \ge 80 \,\text{TeV} @90\% \,\text{CL}$$

Conclusion

• This is the first reported experimental upper limits on $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$

$$\Upsilon(3S) \to e^{\pm} \mu^{\mp} < 3.6 \times 10^{-7} @ 90\%$$
 C.L.

Phys.Rev.Lett. 128 (2022) 9, 091804

• Our reported limit is several orders of magnitude tighter than the indirected limit according to the ref [S.Nussinov, et. al. PRD 63, 016003 (2001)].

• This result can be interpreted as a limit on NP: $\Lambda_{NP}/g_{NP}^2 \ge 80 \,\mathrm{TeV}$

Thanks, and Any Questions

Back up: Charged Lepton Flavour Violation in Upsilon Decays

Back up: Theoretical Upper limit (Indirect)

Nussinov, Peccei, Zhang [1]

- Assume coupling of Υ to eµ looks like: $L_{eff} = gV_{e\mu}\bar{\mu}\gamma_{\alpha}eV^{\alpha}$
- Through Fig 1. this coupling contributes to $A (\mu \rightarrow 3e)$

$$A(\mu \to 3e) = (\bar{u}_{\mu}(p)\gamma^{\alpha}u_{e}(k_{3}))(\bar{v}_{e}(k_{1})\gamma_{\alpha}u_{e}(k_{2}))\frac{g_{V_{e\mu}}g_{V_{ee}}}{M_{V}^{2} - S} \quad ---(1)$$

Since
$$[\Gamma(V \to e^+e^-)] \sim g^2 V_{ee} M_V$$
 and
 $[\Gamma(V \to e^{\pm}\mu^{\mp})] \sim g^2 V_{e\mu} M_V$, while $[\Gamma(W \to e\nu)] \sim g_W^2 M_W$

$$[BR(\mu \to 3e)]_{V-exch} \approx \frac{[\Gamma(V \to e^+e^-)][\Gamma(V \to e^\pm \mu^\pm)]}{[\Gamma^2(W \to e\nu)]} (\frac{M_W}{M_V})^6 \quad ---(3)$$

$$\mathrm{BR}(\Upsilon(3S) \to e^\pm \mu^\mp \leq 2.5\,\times\,10^{-8}.$$

S.Nussinov, et. al. estimate that the contribution of the virtual $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$ to the $\mu \rightarrow eee$ rate would be reduced by approximately $M^2_{\mu}/(2 M^2_{\Upsilon})$ leading to a re-calculated indirect bound: BF($\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$) < 1× 10⁻³

(Left) A vector exchange diagram contributing to $\mu \rightarrow 3e$ (Right) Ordinary muon decay, $\mu \rightarrow ev\bar{v}$, which proceeds via W exchange.

- BF($\mu \rightarrow \text{eee}$) $\leq 1.0 \times 10^{-12}$
- BF($\mu \rightarrow e \nu \bar{\nu}$) $\simeq 100 \%$
- BF(W \rightarrow e⁺ ν) \simeq (10.71 \pm 0.09) %
- $\mathrm{BF}(\Upsilon(3S) \to l^+l^-) \simeq (2.18 \pm 0.21) \%$
- $\Gamma(\Upsilon(3S) = (20.32 \pm 1.85) \ keV$
- $\Gamma(W) = (2.046 \pm 0.049) \; GeV$

[1] Nussinov, et. al. PRD 63, 016003 (2001)

Back up: Analysis Scheme

- Blind Analysis: To eliminate experimenter's bias.
- **Pre-Selection:** Needs a special background filter to collect $e^{\pm}\mu^{\mp}$ events efficiently.
- Final Selection by the analyst: Applied on the pre-selected events
- **PID Selection:** Multivariate Technique applied, tested 16 different PID selectors.
- Optimized Electron and Muon selectors: $\frac{\varepsilon_{e\mu}}{\sqrt{(1+N_{BG})}}$ where

 $\varepsilon_{e\mu}$ is the final efficiency as determined by signal MC and

 N_{BG} is the number of expected background events

Final Selection:

2 tracks (1 electron and 1 muon in the final state), one in each hemisphere;

 $24^{\circ} < \theta_{Lab} < 130^{\circ}$ EMC acceptance for both tracks.

The lepton momenta must satisfy the following condition

$$\left(\frac{p_e}{E_{Beam}} - 1\right)^2 + \left(\frac{p_{\mu}}{E_{Beam}} - 1\right)^2 < 0.01 \text{ where } E_{Beam} = \frac{\sqrt{s}}{2}$$

Angle between the two lepton tracks must satisfy $\theta_{12}^{CM} > 179^{\circ}$ to ensure they emerged as back to back.

Energy deposit by Muon track on the Electromagnetic Calorimeter should be greater than 50 MeV.

Peaking Background

Source of Background	Data Driven Continuum Background Υ(4S)	Peaking Background from Generic Y(3S) MC
Tight PID selection	12.2 ± 2.1	0
Loose PID selection	N/A	1.80 ± 0.9