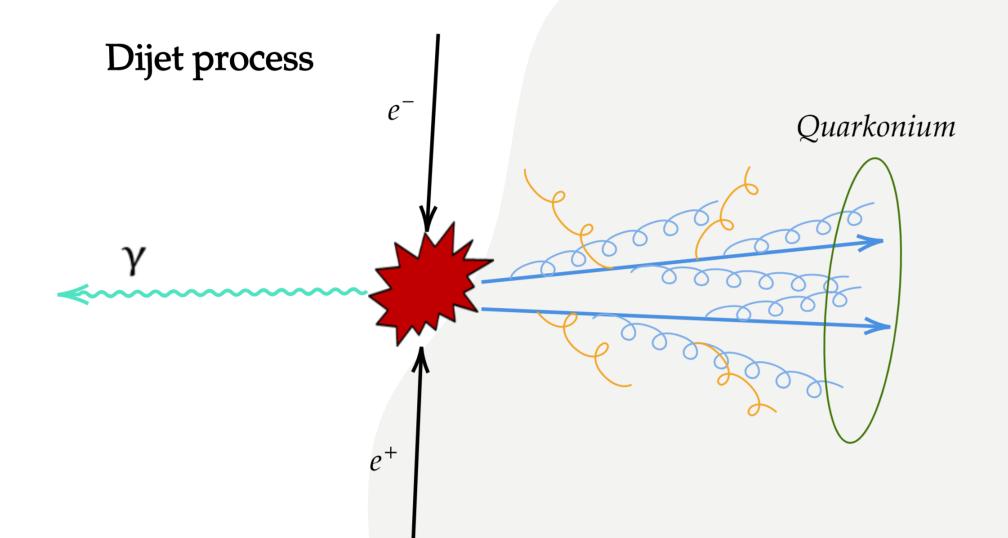
Toward understanding of exclusive heavy-quarkonium production

at subleading power using soft-collinear theory

Yunlu Wang, June-Haak Ee, Daekyoung Kang Fudan University, Shanghai, China

Background

 \succ The quarkonium H in $\gamma * \rightarrow \gamma H$ is produced at $Q \gg m_q$.

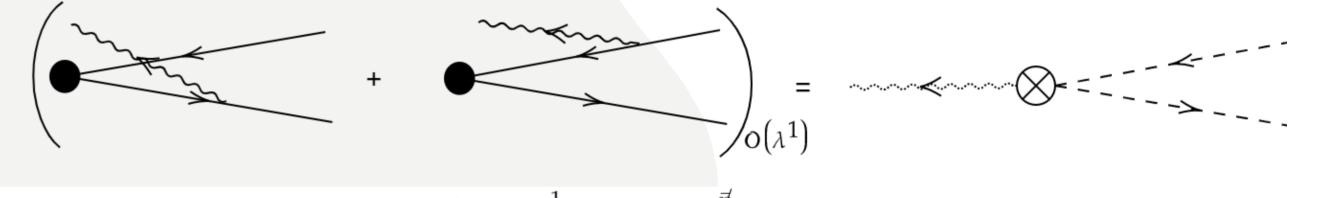


Toward factorization: matching at tree-level

 \Box In general the matching includes α_s and λ expansion,

 $\mathcal{M}_{\text{QCD}} = \sum_{n,m} C_i^{(\alpha_s^n)} \mathcal{M}_{\text{eff},i}^{(\lambda^m)}$ $\square \text{At tree-level, Wilson coefficient } C_h^{(0)} = 1, \text{ and operators } \mathbf{O}_{\chi\chi i}^{(k)} \sim \lambda^k$ are determined by

Tree-level matching between QCD and SCET partonic amplitudes at ${
m O}(\lambda^1)$



Higgs Yukawa couplings in Higgs/Z to Upsilon(J/psi)+ gamma

> studied as a background channel in XYZ searches.

Effective field theory approach		
hierarchy of scales:		
$\mu_h \sim Q = \sqrt{s}$	$ec{p}\sim m_q v$	
$\mu_c \sim \mu_s \sim m_q$	$E\sim m_q v^2$	

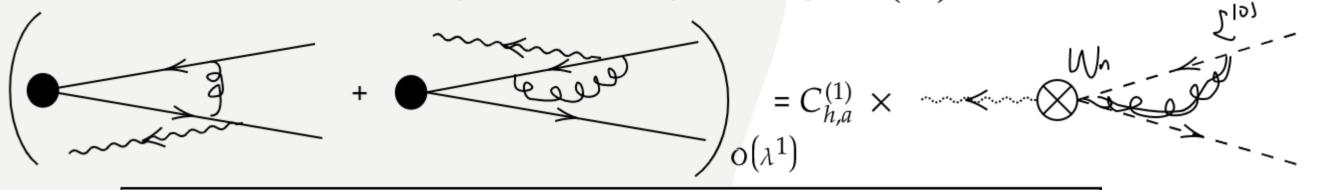
 \succ The energetic back-to-back photon and heavy quarks can be described by Soft-Collinear Effective Theory systematically,

$$egin{aligned} p_q^\mu &\sim Q(\lambda^2,1,\lambda) &\lambda = rac{m_q}{Q} <<1 \ \chi_n &\sim \lambda, \ \mathcal{A}_{n\perp} &\sim \lambda \end{aligned}$$

 \succ The core step is doing factorization of amplitude at leading power [3]

$$i\mathcal{M}\sim C_h\otimes arphi_\gamma\otimes arphi_H\otimes f_H$$

 $\mathcal{O}_{\chi\chi n1}^{(1)\mu} = -\frac{1}{\omega_1} \bar{\chi}_{n,\omega_1} \mathcal{A}_{\perp\bar{n},\omega_3} \frac{\eta}{2} \Gamma^{\mu} \chi_{n,-\omega_2}$ $\mathcal{O}_{\chi\chi n2}^{(1)\mu} = \frac{1}{\omega_2} \bar{\chi}_{n,\omega_1} \Gamma^{\mu} \frac{\bar{\eta}}{2} \mathcal{A}_{\perp \bar{n},\omega_3} \chi_{n,-\omega_2} \,.$ $\mathcal{O}_{\chi\chi n1}^{(2)\mu} = \frac{1}{\omega_1\omega_2} \bar{\chi}_{n,\omega_1} \mathcal{A}_{\perp\bar{n},\omega_3} \frac{\vec{\mu}}{2} \Gamma^{\mu} (\mathcal{P}_{\perp} + m) \frac{\vec{\mu}}{2} \chi_{n,-\omega_2} - \frac{2}{\omega_1\omega_3} \bar{\chi}_{n,\omega_1} \mathcal{P}_{\perp}^{\dagger} \cdot \mathcal{A}_{\perp\bar{n},\omega_3} \Gamma^{\mu} \chi_{n,-\omega_2} - \frac{1}{\omega_1\omega_3} \bar{\chi}_{n,\omega_1} \left[\mathcal{A}_{\perp\bar{n},\omega_3} \mathcal{P}_{\perp}^{\dagger} \right] \Gamma^{\mu} \chi_{n,-\omega_2} ,$ $\mathcal{O}_{\chi\chi n2}^{(2)\mu} = \frac{1}{\omega_1\omega_2} \bar{\chi}_{n,\omega_1} \frac{\vec{\mu}}{2} (\mathcal{P}_{\perp}^{\dagger} + m) \Gamma^{\mu} \frac{\vec{\mu}}{2} \mathcal{A}_{\perp\bar{n},\omega_3} \chi_{n,-\omega_2} - \frac{2}{\omega_2\omega_3} \bar{\chi}_{n,\omega_1} \mathcal{A}_{\perp\bar{n},\omega_3} \cdot \mathcal{P}_{\perp} \Gamma^{\mu} \chi_{n,-\omega_2} + \frac{1}{\omega_2\omega_3} \bar{\chi}_{n,\omega_1} \Gamma^{\mu} \left[-\mathcal{P}_{\perp} \mathcal{A}_{\perp\bar{n},\omega_3} \right] \chi_{n,-\omega_2} ,$ The next-to-leading order $C_h^{(1)}$ should be determined by one-loop matching (in progress) A piece of one-loop matching at $O(\lambda^1)$



Effective operators with identical power and order		
order\power	λ^1	λ^2
$(\alpha_s)^0$	$\checkmark C_{h,0}^{(0)} O_{\chi\chi}^{(1)}$	$\checkmark C_{h,i}^{(0)} O_{\chi\chi i}^{(2)}$
$(\alpha_s)^1$	$\checkmark C_{h,0}^{(1)}(\alpha_s) \mathbf{O}_{\chi\chi}^{(1)}$	$C^{(1)}_{h,i}(\alpha_s) \mathbf{O}^{(2)}_{\chi\chi i}$
(n)	(n)	

The coefficient $C_{h,i}^{(n)}$ is related with $C_{h,0}^{(n)}$ by reparametrization invariant (amplitudes do not depend on direction n).

 $\delta^{(\lambda^1)}(C^{(\alpha^n_s)}\mathcal{O}^{(\lambda^1)}) + \delta^{(\lambda^0)}(C^{(\alpha^n_s)}\mathcal{O}^{(\lambda^2)}) = 0$

- ϕ_{γ} : anti-collinear photon part.
- C_h: short-distance coefficient.
- ϕ_H : collinear matrix element called Light-cone distribution amplitude
- f_H : non-perturbative NRQCD matrix element
- soft sector cancelled at leading power but may appear at subleading power-
- \succ That theory assists to resum large logs Log (Q/m_a)

 $\sum lpha_s^i L(lpha_s L)^k$ α_s L~1

Similar factorization in SCET frame at subleading power and next-to-leading order.

$$\mathcal{O}_{\mathrm{RPI}}(\mathcal{O}_{h,0} \mathcal{O}_{\chi\chi}) + \mathcal{O}_{\mathrm{RPI}}(\mathcal{O}_{h,i} \mathcal{O}_{\chi\chi i}) = 0$$

Summary

- > Exclusive quarkonium production at high energies can be factorized by using SCET.
- \succ We like to understand factorization of γH process up to subleading power.
- \succ From tree-level matching, operators at leading power and some operators at subleading power are obtained
- \succ One-loop matching is required to complete factorization (in progress).

The 13th International Workshop on e+e-collisions from Phi to Psi

Aug 15-19, 2022https://indico.ihep.ac.cn/event/17032/

Reference

1. I. Feige, D. W. Kolodrubetz, I. Moult, I. W. Stewart, JHEP 11 (2017) 142. 2. D. Pirjol, I. W. Stewart, Phys.Rev.D 67 (2003) 094005. 3. X. -P. Wang, D. S. Yang, JHEP 06 (2014) 121. 4. A. Hardmeier, E. Lunghi, D. Pirjol, D. Wyler, Nucl. Phys. B 682 (2004) 150-182.