The 13th International Workshop on e+e- collisions from Phi to Psi PHIPSI 2022

Recent results from the SND experiment at the VEPP-2000 collider

On behalf of the SND Collaboration

D.P. Kovrizhin

Budker Institute of Nuclear Physics, SB RAS, Novosibirsk

19.08.2022

Physical goals

SND experiment at VEPP-2000 collider studies e^+e^- annihilation to hadrons at low energy region ($\sqrt{s} < 2$ GeV). These studies include:

- Measurement of the cross sections e⁺e⁻ → hadrons. Measurement of the cross sections and electromagnetic form-factors, study of many hadron processes dynamics.
- Study of the vector mesons ρ , ω , ϕ and their excited states ρ' , ρ'' , ω' , ω'' , ϕ' , ...
- Study of e⁺e⁻ annihilation to C-even resonances:

 $e^+e^- \rightarrow S, P, A, T.$

SND detector

1 – beam pipe, 2 – tracking system, 3 – aerogel Cherenkov counter, 4 – NaI(Tl) crystals, 5 – phototriodes, 6 – iron muon absorber, 7–9 – muon detector, 10 – focusing solenoids.

SND collected data at VEPP-2M (1996-2000) and at VEPP-2000 (2010-2013) and (2017-...). 3

VEPP-2000 e⁺e⁻ collider

VEPP-2000 parameters:

- c.m. energy 0.3-2.0 GeV
- circumference 24.4 m
- round beam optics
- Luminosity at 2 GeV 1×10³² cm⁻² sec⁻¹ (project) 4×10³¹ cm⁻² sec⁻¹ (achieved)
- Two detectors: SND and CMD-3

SND data

Year	IL (pb ⁻¹)
2010-2013	70
2017	50
2018	90
2019	65
2020	45
2021	57
2022	360

Distribution of integrated luminosity **IL≈670 pb⁻¹** collected in **2017-2022** over c.m. energy. ⁵

Process $e^+e^- \rightarrow \pi^+\pi^-$

JHEP 2101 (2021) 113

Process $e^+e^- \rightarrow \pi^+\pi^-$

The relative difference between the $e^+e^- \rightarrow \pi^+\pi^-$ cross section measured by BaBar, KLOE, SND and CMD-2 at VEPP-2M and the fit to the SND data at VEPP-2000.

Process $e^+e^- \rightarrow \eta \pi^{\circ} \gamma$ in energy region $\sqrt{s} > 1$ GeV

Process $e^+e^- \rightarrow \eta \pi^{\circ} \gamma$ was studied in energy region $\sqrt{s} = 1,05-2$ GeV, IL=95 pb⁻¹.

Following intermediate mechanisms give contribution to $e^+e^- \rightarrow \eta \pi^o \gamma$ process:

 e^+e^- →ωη (main contribution),

 $e^+e^- \rightarrow \phi \eta$, $\rho \eta$, $\phi \pi^\circ$, $\omega \pi^\circ$ (significantly smaller contribution), Assumed contribution from radiative processes: $e^+e^- \rightarrow V'$, V'' → $a_0(980)\gamma$, $a_0(1450)\gamma$, $a_2(1270)\gamma$.

We need to take into account $\omega(1420)$ and V''(1680) resonances to fit measured cross section of the $e^+e^- \rightarrow \omega \eta \rightarrow \eta \pi^o \gamma$ process. It has been found, with a significance of **5,6** σ that the process $e^+e^- \rightarrow \eta \pi^o \gamma$ is not completely described by the hadronic intermediate states $e^+e^- \rightarrow VP$. Missing contribution arises from radiative processes, with the dominance of intermediate mechanism $e^+e^- \rightarrow a_0(1450)\gamma$. *Eur. Phys. J. C80 (2020) no.11, 1008.* 8

Process $e^+e^- \rightarrow \eta\eta\gamma$

e⁺e⁻ \rightarrow $\eta\eta\gamma$ process was measured in the energy region $\sqrt{s} = 1,17-2$ GeV, IL=200 pb⁻¹. Intermediate mechanisms that make contribution to the e⁺e⁻ \rightarrow $\eta\eta\gamma$ process: e⁺e⁻ \rightarrow $\phi\eta$ (main contribution), e⁺e⁻ \rightarrow $\phi\eta$ (main contribution), possible contribution from radiative decays:

Cross section of the

 $e^+e^- \rightarrow V \rightarrow f_0(1500)\gamma, f_2'(1525)\gamma.$

Measured $e^+e^- \rightarrow \eta \eta \gamma$ cross section is consistent with the sum of contributions from the $^{1.1}_{2E}$ [GeV] $e^+e^- \rightarrow \phi \eta$, $e^+e^- \rightarrow \omega \eta \varkappa e^+e \rightarrow \rho \eta$ processes. No significant contribution from the radiative decays has been found. In the energy region of $\phi(1680)$ and $\rho(1700)$ resonances the upper limit for the radiative decays is 11 pb (90% *CL*).

Theoretical predictions for this decays are $\sigma(e^+e^- \rightarrow \phi(1680) \rightarrow f_2(1525)\gamma \rightarrow \eta\eta\gamma)=1,7 \text{ pb}$, $\sigma(e^+e^- \rightarrow \rho(1700) \rightarrow f_0(1500)\gamma \rightarrow \eta\eta\gamma)=0,4-1,9 \text{ pb}$. *Eur. Phys. J. C 82 (2022)*.

Differential cross section:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta C}{4s} \Big[|G_M(s)|^2 (1 + \cos^2 \theta) + \frac{1}{\tau} |G_E(s)|^2 \sin^2 \theta \Big], \quad \beta = \sqrt{1 - 4m_N^2/s}, \quad \tau = \frac{s}{4}m_N^2.$$

 G_E and G_M – electric and magnetic form factors, $|G_E| = |G_M|$ at the threshold, C – Coulomb form factor.

Total cross section:
$$\sigma_0(s) = \frac{4\pi \alpha^2 \beta C}{3s} \left[\left| G_M(s) \right|^2 + \frac{1}{\tau} \left| G_E(s) \right|^2 \right].$$

From the measured $e^+e^- \rightarrow nn$ cross section we determine effective form factor.

$$F(s)^{2} = \frac{2\tau |G_{M}(s)|^{2} + |G_{E}(s)|^{2}}{2\tau + 1}.$$

From analysis of antineutron $\cos\theta$ distribution we determine $|G_E / G_M|$ ratio.

arXiv:2206.13047

$e^+e^- \rightarrow nn$ events in SND

$e^+e^- \rightarrow nn$ events in SND.

- **n** annihilates in electromagnetic calorimeter with big energy deposition.
- **n** has low energy deposition in calorimeter.
- n has low velocity, it's signal in EMC is delayed with respect to typical e⁺e⁻ annihilation event.

Process e⁺e⁻→nn

Calorimeter signal time (event time) is used for the selection of $e^+e^-\rightarrow nn$ events:

Process e⁺e⁻→nn

 $|\mathbf{G}_{\mathbf{E}} / \mathbf{G}_{\mathbf{M}}|$ ratio can be extracted from the measured $\mathbf{cos}\theta$ distribution.

cosθ distribution with \sqrt{s} =1,95 GeV. Histogram is result of the fit with sin²θ for |G_E| and 1+cos²θ for |G_M|. SND results agree with the assumption that $|\mathbf{G}_{\mathbf{E}} / \mathbf{G}_{\mathbf{M}}| = 1$, but do not contradict larger values $|\mathbf{G}_{\mathbf{E}} / \mathbf{G}_{\mathbf{M}}| \approx 1.4$ -1.5, observed at BABAR and BESIII.

Process $e^+e^- \rightarrow nn$

 $e^+e^- \rightarrow nn$ cross section compared with the previous FENICE, SND and BESIII experiments.

The new SND measurement supersedes the previous SND result.

The neutron effective form factor as a function of neutron momentum, compared with the BESIII measurements, and the proton effective form factor, measured by BABAR.

Process e⁺e⁻→nn

Sinusoidal modulation was observed in nucleon effective form factors in BABAR and BESIII experiments. SND and BESIII data fit with significantly lower oscillation frequency.

Summary

- During 2010 2022 the SND detector accumulated ~740 pb⁻¹ of integrated luminosity at the VEPP-2000 electron-positron collider in the c.m. energy range 0.3 – 2 GeV.
- The data taking runs are continued with a goal of $\sim 1 \text{ fb}^{-1}$ of integrated luminosity.
- Data analysis is in progress.
- The $e^+e^- \rightarrow \pi^+\pi^-$ cross section has been measured in the energy range 0.53-0.88 GeV with a systematic uncertainty better than 1%.
- Rare radiative processes $e^+e^- \rightarrow \eta \pi^0 \gamma$ and $\eta \eta \gamma$ have been measured in the energy range 1.05-2 GeV.
- The $e^+e^- \rightarrow nn$ cross section has been measured, neutron effective form factor and $|G_E / G_M|$ ratio have been determined.

Thank you for your attention!