

Experimental Program for Super Tau-Charm Facility

Xiaorong Zhou (On behalf of STCF working group) State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

The 13th International Workshop on e+e- collisions from Phi to Psi Aug.15-19, 2022, Shanghai, China

Super Tau-Charm Facility in China

- Peak luminosity >0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV
- Energy range E_{cm} = 2-7 GeV
- Potential to increase luminosity & realize beam polarization
- Total cost: 4.5B RMB

- 1 ab⁻¹ data expected per year
- Rich of physics program, unique for physics with c quark and τ leptons,
- Important playground for study of QCD, exotic hadrons, flavor and search for new physics.

Expected Data Samples at STCF

Data sample produced per year

	•	•			
CME (GeV)	Lumi (ab ⁻¹)	samples	$\sigma(nb)$	No. of Events	remark
3.097	1	J/ψ	3400	3.4×10^{12}	
3.670	1	$\tau^+\tau^-$	2.4	2.4×10^{9}	
		ψ(3686)	640	6.4×10^{11}	
3.686	1	$\tau^+\tau^-$	2.5	2.5×10^{9}	
		$\psi(3686) \rightarrow \tau^+ \tau^-$		2.0×10^{9}	
		$D^0 ar{D}^0$	3.6	3.6×10^{9}	
		$D^+ \overline{D}^-$	2.8	2.8×10^{9}	
3.770	1	$D^0 ar{D}^0$		7.9×10^{8}	Single Tag
		$D^+ \overline{D}^-$		5.5×10^{8}	Single Tag
		$\tau^+\tau^-$	2.9	2.9×10^{9}	
		$\gamma D^0 \overline{D}^0$	0.40	4.0×10^{6}	$CP_{D^0\bar{D}^0} = +1$
4.040	1	$\pi^0 D^0 \overline{D}^0$	0.40	4.0×10^{6}	$CP_{D^0\bar{D}^0} = -1$
4.040 1		$D_s^+ D_s^-$	0.20	2.0×10^{8}	
		$\tau^+\tau^-$	3.5	3.5×10^{9}	
		$D_{s}^{+*}D_{s}^{-}+c.c.$	0.90	9.0×10^{8}	
4.180	1	$D_{s}^{+*}D_{s}^{-}+c.c.$		1.3×10^{8}	Single Tag
		$\tau^+\tau^-$	3.6	3.6×10^{9}	
		$J/\psi \pi^+\pi^-$	0.085	8.5×10^{7}	
4.230	1	$\tau^+\tau^-$	3.6	3.6×10^{9}	
		γX(3872)			
4 260	1	$\psi(3686)\pi^{+}\pi^{-}$	0.058	5.8×10^{7}	
4.500	1	$\tau^+\tau^-$	3.5	3.5×10^{9}	
4 420	1	$\psi(3686)\pi^{+}\pi^{-}$	0.040	4.0×10^{7}	
4.420	1	$\tau^+\tau^-$	3.5	3.5×10^{9}	
4.620		$\psi(3686)\pi^{+}\pi^{-}$	0.033	3.3×10^{7}	
4.030	1	$\Lambda_c \bar{\Lambda}_c$	0.56	5.6×10^{8}	
	1	$\Lambda_c \bar{\Lambda}_c$		6.4×10^{7}	Single Tag
		$\tau^+\tau^-$	3.4	3.4×10^{9}	
4.0-7.0	3	300 points	scan with 1	0 MeV step, 1 fb ⁻	¹ /point
> 5	2-7	several ab ⁻¹ high e	energy data,	details dependent	on scan results
	1	· · · · · ·		-	

Hyperon Factory

Decay mode	$\mathcal{B}(\text{units } 10^{-4})$	Angular distribution parameter α_{ψ}	Detection efficiency	No. events expected at STCF
$J/\psi ightarrow \Lambda \bar{\Lambda}$	$19.43 \pm 0.03 \pm 0.33$	0.469 ± 0.026	40%	1100×10^{6}
$\psi(2S) \rightarrow \Lambda \bar{\Lambda}$	$3.97 \pm 0.02 \pm 0.12$	0.824 ± 0.074	40%	130×10^{6}
$J/\psi ightarrow \Xi^0 \bar{\Xi}^0$	11.65 ± 0.04	0.66 ± 0.03	14%	230×10^{6}
$\psi(2S) \rightarrow \Xi^0 \bar{\Xi}^0$	2.73 ± 0.03	0.65 ± 0.09	14%	32×10^{6}
$J/\psi \to \Xi^- \bar{\Xi}^+$	10.40 ± 0.06	0.58 ± 0.04	19%	270×10^{6}
$\psi(2S)\to \Xi^-\bar\Xi^+$	2.78 ± 0.05	0.91 ± 0.13	19%	42×10^{6}

Light meson Factory

Decay Mode	$\mathscr{B}(\times 10^{-4})$ [2]	η/η' events
$J/\psi o \gamma \eta'$	52.1 ± 1.7	1.8×10^{10}
$J/\psi ightarrow \gamma\eta$	11.08 ± 0.27	3.7×10^{9}
$J/\psi ightarrow \phi \eta'$	7.4 ± 0.8	2.5×10^{9}
$J/\psi ightarrow \phi\eta$	4.6 ± 0.5	1.6×10^{9}

XYZ Factory

•				
XYZ	Y(4260)	$Z_c(3900)$	$Z_c(4020)$	X(3872)
No. of events	10 ¹⁰	10 ⁹	109	5×10^{6}

- STCF is expected to have higher detection efficiency and low bkg. for productions at threshold
- STCF has excellent resolution, kinematic constraining
- Opportunities at 5-7 GeV which is experimentally blank before

Physics Program at STCF

Expected Sensitivities

Physics at STCF	Benchmark Processes	Key Parameters*	Physics at STCF	Benchmark Processes	Key Parameters*
XYZ properties	$e^+e^- \rightarrow Y \rightarrow \gamma X, \eta X, \phi X$ $e^+e^- \rightarrow Y \rightarrow \pi Z_c, K Z_{cs}$	$N_{ m Y(4260)/Z_c/X(3872)} \sim 10^{10} / 10^9 / 10^6$	CKM matrix	$D^+_{(s)} \to l^+ \nu_l, D \to P l^+ \nu_l$	$\delta extsf{V}_{cd/cs}{\sim}0.15\%;$ $\delta f_{D/D_s}{\sim}0.15\%$
Pentaquarks, Di-charmonium	$e^+e^- \rightarrow J/\psi p\bar{p}, \Lambda_c \overline{D}\bar{p}, \Sigma_c \overline{D}\bar{p}$ $e^+e^- \rightarrow J/\psi \eta_c, J/\psi h_c$	$\sigma(e^+e^- \rightarrow J/\psi p\bar{p})$ ~4 fb; $\sigma(e^+e^- \rightarrow J/\psi c\bar{c})$ ~10 fb (prediction)	γ/ϕ_3 measurement	$D^0 \to K_s \pi^+ \pi^-, K_s K^+ K^- \dots$	$\Delta(\underline{\cos\delta_{K\pi}}) \sim 0.007; \ \Delta(\underline{\delta_{K\pi}}) \sim 2^{\circ}$
Hadron Spectroscopy	Excited <i>c</i> $ar{c}$ and their transition, Charmed hadron, Light hadron	$\frac{N_{J/\psi/\psi(3686)/\Lambda_c}}{10^{12}/10^{11}/10^8}$	$D^0 - \overline{D}^0$ mixing	$\begin{split} \psi(3770) &\to (D^0 \overline{D}{}^0)_{CP=-}, \\ \psi(4140) &\to \gamma (D^0 \overline{D}{}^0)_{CP=+} \end{split}$	$\Delta x \sim 0.035\%;$ $\Delta y \sim 0.023\%$
Muon g-2	$\pi^{+}\pi^{-}, \pi^{+}\pi^{-}\pi^{0}, K^{+}K^{-}$ $\gamma\gamma \to \pi^{0}, \eta^{(\prime)}, \pi^{+}\pi^{-}$	$\varDelta a_{\mu}^{HVP} \ll 40 imes 10^{-11}$	Charm hadron decay	$D_{(s)}, \Lambda_c^+, \Sigma_c, \Xi_c, \Omega_c$ decay	$N_{D/D_s/\Lambda_c} \sim 10^9 / 10^8 / 10^8$
R value, τ mass	$e^+e^- \rightarrow inclusive$ $e^+e^- \rightarrow \tau^+\tau^-$	$\Delta m_{ au}{\sim} 0.012~{ m MeV}$ (with 1 month scan)	γ polarization	$D^0 \to K_1 e^+ \nu_e$	$\Delta A_{UD}^{\prime}\!\sim\!0.015$
Fragmentation functions	$e^+e^- \rightarrow (\pi, K, p, \Lambda, D) + X$ $e^+e^- \rightarrow (\pi\pi, KK, \pi K) + X$	$\Delta A^{Collins} < 0.002$	CPV in Hyperons	$J/\psi ightarrow \Lambda \overline{\Lambda}, \Sigma \overline{\Sigma, \Xi^- \Xi^-}, \Xi^0 \overline{\Xi}^0$	$\Delta A_{\Lambda} \sim 10^{-4}$
Nucleon Form Factors	$e^+e^- \rightarrow B\overline{B}$ from threshold	$\delta R_{EM} \sim 1\%$	CPV in <i>τ</i>	$\tau \to K_s \pi \nu$, EDM of τ ,	$\Delta A_{\tau \to K_s \pi \nu} \sim 10^{-3};$ $\Delta d_{\tau} \sim 5 \times 10^{-19} \text{ (e cm)}$
FLV decays	$\begin{split} \tau &\to \gamma l, lll, lP_1P_2 \\ J/\psi &\to ll', D^0 \to ll'(l' \neq l) \dots \end{split}$	$ \begin{array}{l} \mathcal{B}(\tau \rightarrow \gamma \mu / \mu \mu \mu) < 12 / 1.5 \times 10^{-9}; \\ \mathcal{B}(J/\psi \rightarrow \mathrm{e}\tau) < 0.71 \times 10^{-9} \end{array} $	CPV in Charm	$ \begin{split} D^0 &\to K^+ K^- / \pi^+ \pi^-, \\ \Lambda_c &\to p K^- \pi^+ \pi^0 \dots \end{split} $	$\Delta A_D \sim 10^{-3};$ $\Delta A_{\Lambda_c} \sim 10^{-3}$
LNV, BNV	$D^+_{(s)} \rightarrow l^+ l^+ X^-, J/\psi \rightarrow \Lambda_c e^-,$ $B \rightarrow \overline{B} \dots$	$\mathcal{B}(J/\psi \to \Lambda_c e^-) < 10^{-11}$	FCNC	$\begin{split} D &\to \gamma V, D^0 \to l^+ l^-, e^+ e^- \to D^*, \\ \Sigma^+ &\to p l^+ l^- \dots \end{split}$	$\mathcal{B}(D^0 \to e^+ e^- X) < 10^{-8}$
Symmetry violation	$\eta^{(\prime)} \rightarrow l l \pi^0, \eta^\prime \rightarrow \eta l l \dots$	$\mathcal{B}(\eta' \to ll/\pi^0 ll) < 1.5/2.4 \times 10^{-10}$	Dark photon, millicharged	$e^+e^- \to (J/\psi) \to \gamma A'(\to l^+l^-)$ $e^+e^- \to \chi \bar{\chi} \gamma$	Mixing strength $\Delta \epsilon_{A'} \sim 10^{-4}$; $\Delta \epsilon_{\chi} \sim 10^{-4}$

*Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$

Charmonium (Like) Spectroscopy

- **Belle II :** ISR approach; B meson decay ($m_R < 4.8 \text{ GeV}$)
- **LHCb**: B/Λ_b decay; Prompt production
- STCF: Scan with 10 MeV/step, every point has 10 fb⁻¹/year, 3 ab⁻¹ in 4-7 GeV

Collins Fragmentation Function (FF)

- \rightarrow describes the fragmentation of a transversely polarized quark into a spin-less hadron *h*.
- \rightarrow leads to an azimuthal modulation of hadrons around the quark momentum.

- The statistical uncertainty asymmetry A^{UL} with 1ab⁻¹ at 7 GeV^[1]:
 - > $(1.4 \sim 4.2) \times 10^{-4}$ for $\pi \pi X$
 - > $(3.5 \sim 20) \times 10^{-3}$ for *KKX*
- 2% precision required by EicC

Facilities for Charm Study

- □ LHCb: huge x-sec, boost, 9 fb⁻¹ now (x40 current B-factories)
- B-factories (Belle (II), BaBar): more kinematic constrains, clean environment, ~100% trigger efficiency
- τ-charm factory : Low backgrounds and high efficiency; missing technique; Quantum correlations and CP-tagging are unique;
 - Super τ -Charm Factory (STCF): 4×10⁹ pairs of D^{±,0}, 10⁸ Ds and Λ_c pairs per year
 - Highlighted Physics programs
 - Precise measurement of (semi-)leptonic decay (f_D, f_{Ds}, CKM matrix...)
 - $-D^0 \overline{D}^0$ mixing, CPV
 - Rare decay (FCNC, LFV, LNV....)
 - Charmed baryons (J^{PC}, Decay modes, absolute BF)
 - Excited charmed meson and baryon states: like D_J , D_{sJ} , Λ_c^* (mass, width, J^{PC}, decay modes)
 - Light meson and hyperon spectroscopy studied in charmed hadron decays

D_(s) (Semi-)Leptonic decay

$$\ell^+ \nu_{\ell}) = \frac{G_F^2 f_{D_{(s)}^+}^2}{8\pi} \mid V_{cd(s)} \mid^2 m_{\ell}^2 m_{D_{(s)}^+} \left(1 - \frac{m_{\ell}^2}{m_{D_{(s)}^+}^2} \right)$$

Semi-Leptonic:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = \frac{G_F^2}{2|4\pi^3|} |V_{cs(d)}|^2 p_{K(\pi)}^3 |f_+^{K(\pi)}(q^2)|^2,$$

Directly measurement : $|V_{cd(s)}| \ge f_{D(s)}$ or $|V_{cd(s)}| \ge FF$

- $\hfill\square$ Validate LQCD calculation of Input $f_{B(s)}$ and provide constrain of CKM-unitarity

H.J. Li, J. J. Liu et al., Eur.Phys.J.C 82 (2022) 4, 310; 337

Source	BESI	II [57]	Belle	II [57]	This work at STCF			
bource	$6 \text{ fb}^{-1} \text{ at}^{-1}$	4.178 GeV	50 ab^{-1}	at $\Upsilon(nS)$	1 ab^{-1} at 4.009 GeV			
$\mathcal{B}_{D_s^+ o au^+ u_ au}$	1.6% _{stat.}	2.4% _{syst.}	0.6% _{stat.}	2.7% _{syst.}	0.3% _{stat.}	1.0% _{syst.}		
$f_{D_s^+}$ (MeV)	0.9% _{stat.}	1.4% _{syst.}	_	-	0.2% _{stat.}	0.6% _{syst.}		
$ V_{cs} $	0.9% _{stat.}	1.4% _{syst.}	_	_	0.3% _{stat.}	0.7% _{syst.}		
$\frac{\mathcal{B}_{D_{\mathcal{S}}^+ \to \tau^+ \nu_{\overline{\tau}}}}{\mathcal{B}_{D_{\mathcal{S}}^+ \to \mu^+ \nu_{\overline{\mu}}}}$	2.6% _{stat.}	2.8% _{syst.}	0.9% _{stat.}	3.2% _{syst.}	0.5% _{stat.}	1.4% _{syst.}		

Photon Polarization in $b \rightarrow s\gamma$

- In $b \rightarrow s\gamma$, the photon is left-handed under SM prediction. Many NP models have predicted a significant right-handed component of photon.
- A novel method is proposed by combine $B \to K_{res}(\to K\pi\pi)\gamma$ and $D^0 \to K_{res}ev_e$ to obtain the photon polarization model-independently (*w. Wang et al., PRL. 125, 051802 (2020)*).

 A_{UD} in $B \to K_{res} \gamma$ proportional to λ_{γ}

 $A_{\rm UD} = \frac{\Gamma_{K_{\rm res}\gamma}[\cos\theta_K > 0] - \Gamma_{K_{\rm res}\gamma}[\cos\theta_K < 0]}{\Gamma_{K_{\rm res}\gamma}[\cos\theta_K > 0] + \Gamma_{K_{\rm res}\gamma}[\cos\theta_K < 0]}$ $= \lambda_{\gamma} \frac{3 \, {\rm Im}[\vec{n} \cdot (\vec{J} \times \vec{J^*})]}{4 \, |\vec{J}|^2} \cdot \text{ LHCb: } A_{UD} = (6.9 \pm 1.7) \times 10^{-2}$

At STCF, over 30k signal events of $D^0 \rightarrow K_1(1270)^- e^+ v_e$ can be reconstructed

The photon polarization is given as: λ

$$L_{\gamma} = \frac{|C_{7R}|^2 - |C_{7L}|^2}{|C_{7R}|^2 + |C_{7L}|^2},$$

 $A'_{IID} \cong (9.2 \pm$

 $(2.3) \times 10^{-2}$ in

The dependence of Wilson coefficient on A'_{UD} (using A_{UD} as input):

Determination of λ_{γ} model independent by combining with $D \rightarrow K_1 l^+ \nu_{\tau}$

CP violation

- In 1964, the first CPV was discovered in Kaon;
- In 2001, CPV in B was established by two B-factories;
- In 2019, CPV discovered in D meson (LHCb)
- All are consistent with CKM theory in the Standard model
- Baryon asymmetry of the Universe means that there must be non-SM CPV source.

2008

Probe CP violation

In Charm Decay

Quantum coherence of D^0 and \overline{D}^0 $\psi(3770) \rightarrow (D^0 \overline{D}^0)_{CP=-}$ or $\psi(4140) \rightarrow D^0 \overline{D}^{*0} \rightarrow \pi^0 (D^0 \overline{D}^0)_{CP=-}$ or $\gamma (D^0 \overline{D}^0)_{CP=+}$

	1/ab @4. (QC QC+	.009 GeV incoherent)	BelleII(50/ab)	LHCb (SL P	(50/fb) rompt)
<i>x</i> (%)	0.036	0.035	0.03	0.024	0.012
y(%)	0.023	0.023	0.02	0.019	0.013
r _{CP}	0.017	0.013	0.022	0.024	0.011
$\alpha_{CP}(^{\circ})$	1.3	1.0	1.5	1.7	0.48

• In $K^0 - \overline{K}^0$ Mixing

STCF Accelerator

Challenge: realiz	ze luminosity of <mark>>0.5x10³⁵ cm⁻² s⁻¹</mark>
$L(cm^{-})$	$(r^2 s^{-1}) = \frac{\gamma n_b I_b}{2 \rho r \beta^*} H \xi_y$

Interaction Region: Large Piwinski Angle Collision + Crabbed Waist

Parameters	Phase1	Phase2
Circumference/m	600~800	600~800
Optimized Beam Energy/GeV	2.0	2.0
Beam Energy Range/GeV	1-3.5	1-3.5
Current/A	1.5	2.0
Emittance $(\varepsilon_x/\varepsilon_y)/nm \cdot rad$	6/0.06	5/0.05
β Function @IP (β_x^*/β_y^*) /mm	60/0.6	50/0.5(estimated)
Full Collision Angle 20/mrad	60	60
Tune Shift ξy	0.06	0.08
Hourglass Factor	0.8	0.8
Aperture and Lifetime	15σ, 1000s	15σ, 1000s
Luminosity @Optimized Energy/×10 ³⁵ cm ⁻² s ⁻¹	~0.5	~1.0

- ➤ Length: 400m
- e⁺, a convertor, a linac and a damping ring, 0.5 GeV
- e⁻, a polarized e- source, accelerated to 0.5 GeV
- ▶ No booster, 0.5 GeV \rightarrow 1~3.5 GeV 13

Preliminary Design of Lattice

Parameters	Unit	Value
Circumference	m	574.78
Distance from final defocusing quadrupole to IP	m	0.9
Optimized energy	GeV	2.0
Total beam current	A	2
Horizontal/Vertical beta @ IP	m	0.09/0.0006
Total crossing angle (2θ)	mrad	60
Piwinski angle (ϕ)	rad	18.9
Beam-beam tune shift (ξ_x/ξ_y)	_	0.0038/0.0835
Coupling ratio		0.5%
Natural chromaticities (C_x/C_y)	_	-87/-513
Horizontal emittance (ϵ_x) without/with IBS	nmrad	2.76/4.17
Horizontal beam size @ IP without/with IBS	μm	15.77/19.37
Vertical beam size @ IP without/with IBS	μm	0.091/0.117
Energy spread $\left(\frac{\sigma_{\Delta E}}{E}\right)$ without/with IBS	×10 ⁻⁴	5.3/7.2
Momentum compaction factor	_	7.2×10^{-4}
RF frequency	MHz	499.67268
RF voltage	KV	1.2
Harmonic number	_	958
Bunch length (σ_z)	mm	12.2
Particle number per bunch (N_b)	_	5.0×10^{10}
Energy loss per turn	MeV	0.1315
Synchrotron tune (v_s)	_	0.00388
Damping times $(\tau_x/\tau_y/\tau_s)$	ms	58.51/58.33/29.12
Peak luminosity	cm ⁻² s ⁻¹	1.2×10^{35}
Touschek lifetime	second	35

Linear lattice is designed with considering many factors and high precision to meet the high luminosity

- Total ring composed of 8 bending arc periods (4 super-periods), one interaction region, one technical region and 5 Siberian snakes.
- Beam-beam simulation: luminosity stable after 10,000 turns => L=7.2×10³⁴ cm⁻²s⁻¹

*J.Q. Lan, et al., Design of beam optics for a Super Tau-Charm Factory, 2021 JINST 16 T07001

Machine-Detector Interface

Beam pipe

- Inner radius: 30mm
- Thickness: 3mm
- Beam crossing angle: 2×30mrad

Magnet:

- De-focus magnet: 0.9 m from IP
- Focus magnet: 1.4 m from IP
- anti-solenoid and a correcting magnet: cancel magnetic field from detector

Helium channel:

- Cool down magnet
- Angle between MDI structure and mid-line of two beams is 15°
- Tungsten shield to suppress bkg.

Beam Background Study

Sources of background:

Luminosity-related background: radiative

■RBB ■TWO PHOTON ■TOUS ■COUL ■BREMS

A beam-test have been carried out at BEPCII/BESIII to verify the simulations.

STCF Detector

Requirement:

- High detection efficiency and good resolution
- Superior PID ability
 - Tolerance to high rate/background environment

Inner tracker

□ 3-layer cylindrical-µRWell □ Inner radii 6 , 11 , 16 cm □ Material budget/layer ~0.25%X₀ ٠ □ 2D readout, maximum counting rate: 112 kHz/cm²。 **D**Working gas: Ar:CO₂=85:15 **Detector** performance - pi--kaon Z resolution ϕ resolution Polar angle (degr Polar angle (degree STCF CDR STCF CDR 09 0.15% X/X0 0.15% X/X0 0.25% X/X0 0.8 0.25% X/X0 0.35% X/X0 $^{0.7}_{0.6}$ 0.35% X/X0 0.7 0.45% X/X0 0.45% X/X0 Only MDC Only MDC Momentum resolution 0.4 0.3 0.2 0.4 0.6 0.8 1.2 1.6 1.8 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 p(GeV)

Silicon-based

- Excellent radiation resistance and better vertex resolution
- Three layers of silicon pixel detector with radii 3.6, 9.8, 16 cm
- CMOS silicon pixel is considered

 Further optimization of detector structure, manufacturing of detector prototype and performance test

Main Drift Chamber (MDC)

Drift chamber: robustness, low cost and low material budget

MDC expected performance

MDC optimization:

- **D** 8 superlayers, six layers in each superlayer
- □ Square-shape cell structure
- □ sense(field)wire: 20(100)µm-diameter goldcoated tungsten (aluminum)wire
- **D** Working gas: He/C_3H_8 (60/40)
- □ Material budget: 4.0%X₀

Readout Electronics

11520 readout electronic channels, compose of FEE modules and Readout Units

Particle Identification System - RICH

Micro-pattern gas detector (MPGD) based Ring Imaging Cherenkov detector (RICH)

Radiator (liquid C ₆ F ₁₄)	10 mm
Quartz	
Mesh	~100 mm
CsI on THGEM Photo-	
	∢∼∼```` ``
MM	2 mm 🗘
	/~0.1 mm ♥
Ý	Charge particle

RICH optimization:

- **D** Polar coverage: $|\cos\theta| < 0.83$
- **D** Radial position: 0.85 < r < 1.05 m
- □ Material budget <0.3X₀
- □ fast time response to cope high luminosity environment
- **D** Radiator: C_6F_{14} in Quartz box / Quartz, n~1.3
- □ Np.e ~ 10
- **D** Photoelectron drifted to the MM with a gain $>10^5$

2019@DESY principle prototype beam test

- Quartz radiator+C_SI photocathode +MPGD photoelectric detector+AGET circuit
- Second round beam test to be carried out

RICH Expected Performance

Particle Identification System - DTOF

Detection of Internal total-Reflected Cherenkov light (DIRC) DTOF optimization:

- **D** Polar coverage: $0.81 < |\cos\theta| < 0.93$
- □ Fused silica radiator, fan shaped, 15mm thick
- □ Array of 3X(15-16) MCP-PMT directly coupled to radiator

Expected Performance of DTOF

> $4\sigma \pi/K$ separation power with p<2.4GeV/c

Finished small-size prototype and cosmic-ray test

Large-size DTOF prototype will be assembled on Sep.2022.

Electromagnetic Calorimeter (EMC)

EMC optimization

- Pure CsI crystal => short decay time & good radiation resistance
- Light collection: Avalanche Photodiode (APD), large gain
- Length: 28cm(15X₀), 5X5 cm²
- Reflective Material: Teflon film
- 6732 crystals in barrel, 1938 at endcaps

Expected performance of EMC

Muon Detector (MUD)

Optimization of MUD:

- Hybrid design of MUD: 3 layer Bakelite-RPC, 7 layers plastic scintillator Bakelite-RPC
- Resistive Plate Chamber: low bkg., high eff., robustness、 low cost
- Plastic scintillator: higher count rate, sensitive to neutral particles
- Thickness of iron yoke: 4, 4, 4.5, 4.5, 6, 6, 6, 8, 8 cm

Performance of MUD

BDT performed to distinguish π/μ

Offline Software

- □ Offline Software System of Super Tau-Charm Facility (OSCAR)
 - External Interface+ Framework +Offline

Analysis

Reconstruction

Generator

Simulation

Calibration

Offline

SNiPER

- SNIPER framework provides common functionalities for whole data processing
- □ Offline including Generator, Simulation, Calibration, Reconstruction and Analysis

OSCAR

ExternalInterface

DD4HEP ROOT Geant4

HepMC CLHEP Boost Python

.....

D Rec. Algorithm, calibration, analysis tool and performance test are under optimizations

Tentative Plan

														2031-	2041-
	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2040	2042
Form Group															
CDR															
TDR															
Construction															
In operation															
Upgrade															

Activities: http://cicpi.ustc.edu.cn/indico/categoryDisplay.py?categId=2

International Collaboration

Super Charm-Tau at Novosibirsk, RUSSIA, Budker Institute of Nuclear Physics (BINP)

- Pre-Agreement of Joint effort on R&D, details are under negotiation
- Joint workshop between China, Russia, and Europe
 - 2018 UCAS (March), Novosibirsk (May), Orsay (December)
 - 2019 Moscow(September), 2020 Online (November), 2021 Online (Nov.)

Fund Support

- Double First-Class university project foundation of USTC, 20 Million RMB (2018-2021)
- International partnership program of CAS, 3.5 million RMB (year 2021-2023)
- Three key NSFC projects for relevant technologies, and several general and youth programs ...
- Now, Anhui Province, Hefei city and USTC have agree to jointly endorse the R&D project of STCF, and the process of support is under way.

Summary

- Super τ -c Facility (STCF): e⁺e⁻ collision with E_{cm} = 2 7 GeV, L > 0.5 × 10³⁵ cm⁻²s⁻¹
- STCF is one of the crucial precision frontier aiming for understanding QCD, testing EW models and probing new physics
- Many activities on physics/detector/accelerator, three volumes CDR finished
- Key technology R&D project is being promoted
- An International collaboration is necessary to boost the construction of the project

