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Motivation

Form factors are basic building blocks for many physical
observables:

t t̄ production at hadron and e+ e− colliders

µ e scattering

Higgs production and decay

...

Form factors exhibit an universal infrared behavior.
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The Process

X(q)→ Q(q1) + Q(q2)

q2
1 = q2

2 = m2, q2 = s = ŝ ·m2

vector : jvµ = ψγµψ Γv
µ = F v

1 (s)γµ −
i

2m
F v

2 (s)σµνqν

axial-vector : jaµ = ψγµγ5ψ Γa
µ = F a

1 (s)γµγ5 −
1

2m
F a

2 (s)qµγ5

scalar : js = mψψ Γs = mF s(s)

pseudo-scalar : jp = imψγ5ψ Γp = imF p(s)γ5

q

q1

q2
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Previous Calculations

NNLO

F (2)
I fermionic corrections [Hoang, Teubner ’97]

F (2)
I [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi ’04-’06]

+O(ε) [Gluza, Mitov, Moch, Riemann ’09]

+O(ε2) [Ahmed, Henn, Steinhauser ’17; Ablinger, Behring, Blümlein, Falcioni, Freitas, Marquard, Rana, Schneider ’17]

NNNLO

F (3)
I large-Nc [Henn, Smirnov, Smirnov, Steinhauser ’16-’18; Ablinger, Marquard, Rana, Schneider ’18]

nl [Lee, Smirnov, Smirnov, Steinhauser ’18]

nh (partially) [Blümlein, Marquard, Rana, Schneider ’19]

this talk: full (numerical) results for non-singlet and singlet diagrams at
NNNLO
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Previous Calculations

q2 = s = − (1− x)2

x

The large-Nc and nl contributions at NNNLO can be written as iterated integrals over the letters:

1
x
,

1
1 + x

,
1

1− x
,

1
1− x + x2 ,

x
1− x + x2

The nh terms already contain structures which go beyond iterated integrals.

⇒We aim at the full solution through analytic series expansions and numerical matching.
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Technical Details

Generate diagrams with QGRAF. [Nogueira ’93]

Use FORM [Ruijl, Ueda, Vermaseren ’17] for Lorentz Dirac and color algebra.
[Ritbergen, Schellekens, Vermaseren ’98]

Map the output to predefined integral families with q2e/exp.
[Harlnder, Seidensticker, Steinhauser ’97-’99]

Reduce the scalar integrals to masters with Kira.
[Klappert, Lange, Maierhöfer, Usovitsch, Uwer ’17,’20]

We ensure a good basis where denominators factorize in ε and ŝ with
ImproveMasters.m. [Smirnov, Smirnov ’20]

Establish differential equations in variable ŝ using LiteRed. [Lee ’12,’14]

non-singlet singlet
diagrams 271 66
families 34 17
masters 422 316
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Algorithm to Solve Master Integrals

Establish a system of differential equations for the master integrals in the variable ŝ.

Compute an expansion around ŝ = 0 by:
Inserting an ansatz for the master integrals into the differential equation.

Mn(ε, ŝ = 0) =
∞∑

i=−3

jmax∑
j=0

c(n)
ij εi ŝj

Compare coefficients in ε and ŝ to establish a linear system of equations for the c(n)
ij .

Solve the linear system in terms of a small number of boundary constants using Kira with FireFly.
[Klappert, Klein, Lange ’19,’20]

Compute boundary values for ŝ = 0 and obtain an analytic expansion.

Build a general expansion around a new point, e.g. ŝ = ŝ0, by modifying the ansatz and repeating
the steps above.

Match both expansions numerically at a point where both expansions converge, e.g. ŝ0/2.

Repeat the procedure for the next point.
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Mn(ε, ŝ = 0) =
∞∑

i=−3

jmax∑
j=0

c(n)
ij εi ŝj
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Calculation of Boundary Conditions

s → 0

⇒

For s = 0 the master integrals reduce to 3-loop on-shell propagators:
These integrals are well studied in the literature. [Laporta, Remiddi ‘96; Melnikov, Ritbergen ‘00; Lee, Smirnov ‘10]

The reduction introduces high inverse powers in ε, which require some integrals up to weight 9.

We calculate the needed terms with SummerTime.m [Lee, Mingulov ‘15] and PSLQ [Ferguson, Bailey ‘92] .

The singlet master integrals need a proper asymptotic expansion around s = 0, which we
implemented with the help of Asy.m [Jantzen, Smirnov, Smirnov ‘12] .
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Calculation of Boundary Conditions

E.g. extension of G66 (given up to and including O(ε3) in [Lee, Smirnov ‘10] ):

= · · · + ε
4

(
−4704s6 − 9120s7a − 9120s7b − 547s8a + 9120s6 ln(2) + 28 ln4(2) +

112 ln5(2)

3
−

808

45
ln6(2)

−
347

9
ln8(2) + 672Li4

( 1

2

)
−

5552

3
ln4(2)Li4

( 1

2

)
− 22208Li4

( 1

2

)2 − 4480Li5
( 1

2

)
− 12928Li6

( 1

2

)
+ . . .

)

+ ε
5

(
14400s6 −

377568s7a

7
−

93984s7b

7
− 2735s8a + 7572912s9a − 3804464s9b −

5092568s9c

3
− 136256s9d

+ 681280s9e + 272512s9f +
377568

7
s6 ln(2)−

32465121

20
s8a ln(2)− 10185136s8b ln(2) + 136256s7b ln2(2) + . . .

)
+O(ε6)
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Series Expansions

Special points:

s = 0 s = 4m2 s = ±∞

x = 1 x = −1 x = 0

static limit 2-particle threshold high energy limit

Every expansion point needs a different ansatz:

non-singlet: Mn(ε, ŝ = 0) =
∞∑

i=−3

jmax∑
j=0

c(n)
ij εi ŝj , singlet: Mn(ε, ŝ = 0) =

∞∑
i=−3

jmax∑
j=0

i+3∑
k=0

c(n)
ij εi

√
−ŝ

j
lnk(√−ŝ

)
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Series Expansions

Special points:

s = 0 s = 4m2 s = ±∞

x = 1 x = −1 x = 0

static limit 2-particle threshold high energy limit

Every expansion point needs a different ansatz:

Mn(ε, ŝ = 4) =
∞∑

i=−3

jmax∑
j=−smin

i+3∑
k=0

c(n)
ijk εi

[√
4− ŝ

]j
lnk
(√

4− ŝ
)
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Series Expansions

Special points:

s = 0 s = 4m2 s = ±∞

x = 1 x = −1 x = 0

static limit 2-particle threshold high energy limit

Every expansion point needs a different ansatz:

Mn(ε, ŝ → ±∞) =
∞∑

i=−3

jmax∑
j=−smin

i + 6∑
k=0

c(n)
ijk εi ŝ−j lnk (ŝ)
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Series Expansions

Special points:

s = 0 s = 4m2 s = ±∞ s = 16m2

x = 1 x = −1 x = 0 x = 4
√

3− 7

static limit 2-particle threshold high energy limit 4-particle threshold

Every expansion point needs a different ansatz:

Mn(ε, ŝ = 16) =
∞∑

i=−3

jmax∑
j=−smin

i+3∑
k=0

c(n)
ijk εi

[√
16− ŝ

]j
lnk
(√

16− ŝ
)
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Series Expansions

Special points:

s = 0 s = 4m2 s = ±∞ s = 16m2

x = 1 x = −1 x = 0 x = 4
√

3− 7

static limit 2-particle threshold high energy limit 4-particle threshold

Every expansion point needs a different ansatz.

We construct expansions with jmax = 50 around:

ŝ = { −∞,−32,−28,−24,−16,−12,−8,−4, 0, 1, 2, 5/2, 3, 7/2, 4,

9/2, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 19, 22, 28, 40}

Motivation Definition and Previous Calculations Technical Details Results Conclusions and Outlook

Kay Schönwald – Massive Form Factors Shanhai, August 19, 2022 11/20



Example

-12 -10 -8 -6 -4 -2 0 2
0

10

20

30

40

50

60

Expansion around ŝ = 0.
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Example
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Expansion around ŝ = 0.

Expansion around ŝ = −4,
matched at ŝ = −2.
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Example

-12 -10 -8 -6 -4 -2 0 2
0
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Expansion around ŝ = 0.

Expansion around ŝ = −4,
matched at ŝ = −2.

Expansion around ŝ = −8,
matched at ŝ = −6.

Motivation Definition and Previous Calculations Technical Details Results Conclusions and Outlook

Kay Schönwald – Massive Form Factors Shanhai, August 19, 2022 12/20



Algorithm to Solve Master Integrals

There are other approaches based on expansions:

SolveCoupledSystems.m [Blümlein, Schneider ’17]

DESS.m [Lee, Smirnov, Smirnov ’18]

DiffExp.m [Hidding ’20]

AMFlow.m [Liu, Ma ’22]

SeaSyde.m [Armadillo et al ’22]

...

Our approach ...

... does not require a special form of differential equation.

... provides approximation in whole kinematic range.

... is applied to physical quantity. [Fael, Lange, KS, Steinhauser ’21]
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Renormalization and Infrared Structure

UV renormalization

On-shell renormalization of mass ZOS
m , wave function ZOS

2 , and (if needed) the currents.
[Chetyrkin, Steinhauser ’99; Melnikov, Ritbergen ’00]

IR subtraction

Structure of the infrared poles is given by the cusp anomalous dimension Γcusp.
[Grozin, Henn, Korchemski, Marquard ’14]

Define finite form factors F = ZIRF finite with the UV renormalized form factor F and

ZIR = 1− αs

π

1
2ε

Γ
(1)
cusp −

(αs

π

)2
(
...

ε2 +
1
4ε

Γ
(2)
cusp

)
−
(αs

π

)3
(
...

ε3 +
...

ε2 +
1
6ε

Γ
(3)
cusp

)
Γcusp = Γcusp(x) depends on kinematics.

Γcusp is universal for all currents.
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Results – Analytic ŝ = 0 Expansion

Analytic expansions for ŝ = 0:

F v
1 (ŝ = 0) =

{
C3

F

(
−15a4 −

17π2ζ3

24
− 18367ζ3

1728
+

25ζ5

8
− 5l4

2

8
− 19

40
π2l2

2 +
4957π2l2

720
+

3037π4

25920

− 24463π2

7776
+

13135
20736

)
+ CAC2

F

(19a4

2
− π2ζ3

9
+

17725ζ3

3456
− 55ζ5

32
+

19l4
2

48
− 97

720
π2l2

2

+
29π2l2

240
− 347π4

17280
− 4829π2

10368
+

707
288

)
+ C2

ACF

(
−a4 +

7π2ζ3

96
+

4045ζ3

5184
− 5ζ5

64
− l4

2

24

+
67
360

π2l2
2 −

5131π2l2
2880

+
67π4

8640
+

172285π2

186624
− 7876

2187

)}
ŝ + fermionic corrections +O(ŝ2)

with l2 = ln(2), a4 = Li4(1/2) and CA = 3, CF = 4/3 for QCD.

The expansions for all currents are available.

We have calculated the expansion up to O(s67).
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Results – Pole Cancellation

Except for s = 0 the results of the expansions are not analytic.

We can use the pole cancellation to estimate the precision.

⇒We find at least 8 significant digits, although some regions are much more precise.

To estimate the number of significant digits we use:

log10

(∣∣∣∣expansion− analytic
analytic

∣∣∣∣)
The analytic expressions for the poles are
expressed by Harmonic Polylogarithms which can
be evaluated with ginac. [Vollinga, Weinzierl ’05]

-40 -20 0 20 40
-20

-18

-16

-14

-12

-10

-8
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100 80 60 40 20 0
s/m2

30

20

10

0
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20

Ff,
(3

)
1

C3
F

C2
F CA

CFC2
A

20 40 60 80 100
s/m2

20

10

0

10

20

30

Re
(F

f,
(3

)
1

)

C3
F

C2
F CA

CFC2
A
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Results – High Energy Limit
For s →∞ there is the prediction: [Liu, Penin, Zerf ’17]

F f ,(3)
1 = − C3

F

384
l6
s −

m2

s

(
C3

F

240
− C2

F CA

960
− CF C2

A

1920

)
l6
s + . . . , with ls = ln

(
m2

−s

)
We obtain for example:

F f ,(3)
1

∣∣∣
s→−∞

= 4.7318C3
F − 20.762C2

F CA + 8.3501CF C2
A +

[
3.4586C3

F − 4.0082C2
F CA − 6.3561CF C2

A

]
ls

+
[
1.4025C3

F + 0.51078C2
F CA − 2.2488CF C2

A

]
l2
s +

[
0.062184C3

F + 0.90267C2
F CA − 0.42778CF C2

A

]
l3
s

+
[
− 0.075860C3

F + 0.20814C2
F CA − 0.035011CF C2

A

]
l4
s +

[
−0.023438C3

F + 0.019097C2
F CA

]
l5
s

+
[
−0.0026042C3

F

]
l6
s −

{
− 92.918C3

F + 123.65C2
F CA − 47.821CF C2

A +
[
− 10.381C3

F + 2.3223C2
F CA

+ 17.305CF C2
A

]
ls +

[
4.9856C3

F − 19.097C2
F CA + 8.0183CF C2

A

]
l2
s +

[
3.0499C3

F−6.8519C2
F CA + 1.9149CF C2

A

]
l3
s

+
[
0.67172C3

F − 0.91213C2
F CA + 0.24069CF C2

A

]
l4
s +

[
0.13229C3

F − 0.051389C2
F CA + 0.0043403CF C2

A

]
l5
s

+
[
0.0041667C3

F − 0.0010417C2
F CA − 0.00052083CF C2

A

]
l6
s

}m2

s
+O

(
m4

s2

)
+ fermionic contributions ,
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Results – High Energy Limit
For s →∞ there is the prediction: [Liu, Penin, Zerf ’17]

F f ,(3)
1 = − C3

F

384
l6
s −

m2

s

(
C3

F

240
− C2

F CA

960
− CF C2

A

1920

)
l6
s + . . . , with ls = ln

(
m2

−s

)
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∣∣∣
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Results – Matching Coefficients

For QQ production close to threshold it is advantageous to calculate the cross section in
non-relativistic QCD (NRQCD).

The naive expansion around the threshold of the form factor

x =
√

4− ŝ = 0

defines the matching coefficients between QCD and NRQCD. [Pineda ’11]

At threshold the momenta can have different scalings: [Beneke, Smirnov ’98]

hard (h): k0 ∼ m, ki ∼ m

potential (p): k0 ∼ x2 ·m, ki ∼ x ·m
soft (s): k0 ∼ x ·m, ki ∼ x ·m
ultrasoft (u): k0 ∼ x2 ·m, ki ∼ x2 ·m
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Results – Matching Coefficients

The previous calculation relied heavily on sector decomposition and numerical integration with
FIESTA. [Marquard, Piclum, Seidel, Steinhauser ’14]

We can improve the precision significantly:

c(3)
v = C3

F cFFF + CF C2
AcFFA + CF C2

AcFAA + fermionic and singlet contributions

cv
FFF = 36.55(0.53) → 36.49486246

cv
FFA = −188.10(0.83) → −188.0778417

cv
FAA = − 97.81(0.38) → −97.73497327

We calculated the matching coefficients for all four currents.

Recently new dedicated calculation with increased precision and two mass corrections [Feng et al,

arXiv:2208.04302] .
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Conclusions and Outlook

Conclusions

We have calculated the non-singlet and singlet contributions to the massive quark form factors at
NNNLO.

We applied a semianalytic method by constructing series expansions and numerical matching.
We can reproduce known results in the literature, e.g.

the large Nc limit.
expansion terms in the static, high energy and threshold expansion.

We estimate the precision to 8 significant digits over the whole real axis.

The method is promising to tackle other one-scale problems.

Outlook

Calculate the contributions of the singlet diagrams where the current couples to massless quarks.
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Moebius Transformations

The radius of convergence is at most the distance to the closest singularity.

We can extend the radius of convergence by changing to a new expansion variable.

If we want to expand around the point xk with the closest singularities at xk−1 and xk+1, we can
use:

yk =
(x − xk )(xk+1 − xk−1)

(x − xk+1)(xk−1 − xk ) + (x − xk−1)(xk+1 − xk )

The variable change maps {xk−1, xk , xk+1} → {−1, 0, 1}.
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Results – Threshold Expansion

Close to threshold it is interesting to consider:

σ(e+e− → QQ̄) = σ0β

(
|F v

1 + F v
2 |

2
+

∣∣(1− β2)F v
1 + F v

2

∣∣2
2(1− β2)

)
︸ ︷︷ ︸

=3/2 ∆

with β =
√

1− 4m2/s.

Real radiation is supressed by β3.
We find (with l2β = ln(2β)):

∆(3) = C3
F

[
−32.470

β2
+

1
β

(
14.998− 32.470l2β

)]
+ C2

ACF
1
β

[
16.586l2

2β − 22.572l2β + 42.936
]

+ CAC2
F

[ 1
β2

(
−29.764l2β − 7.770339

)
+

1
β

(
−12.516l2β − 11.435

)]
+O(β0) + fermionic contributions
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