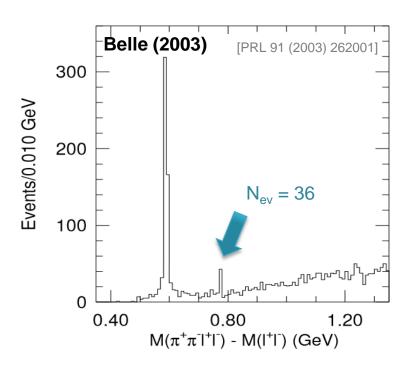
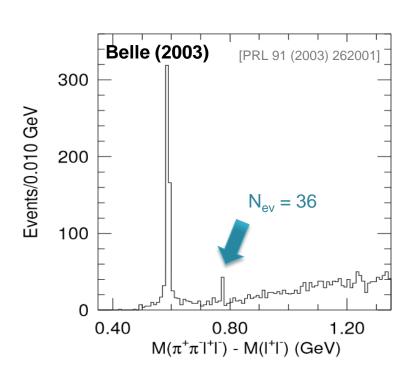
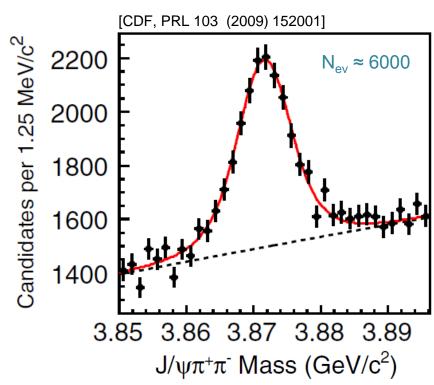


Klaus Götzen and Frank Nerling for the PANDA Collaboration

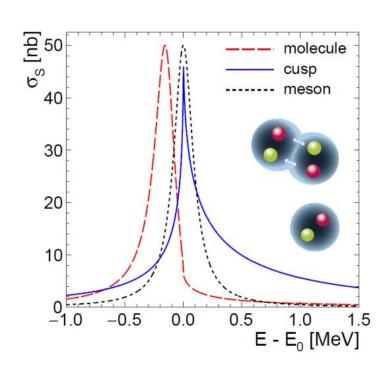

GSI Darmstadt

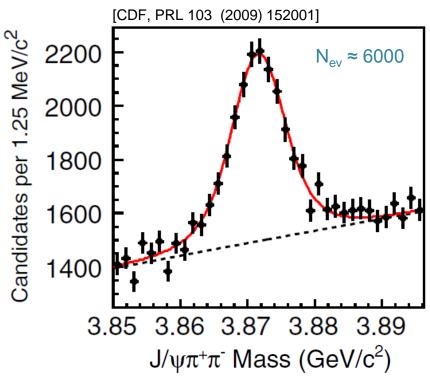
PhiPsi Workshop 2022
13th International Workshop on e⁺e⁻ Collisions from Phi to Psi
Aug. 15-19, 2022

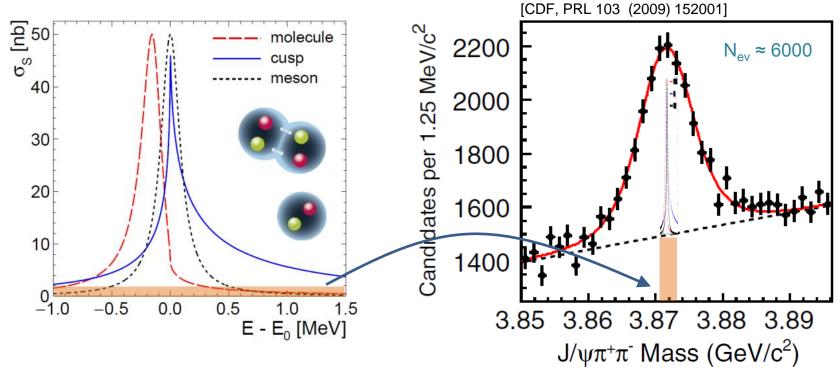



INTRODUCTION

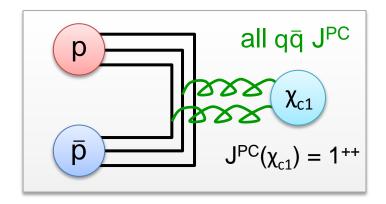
- χ_{c1}(3872) discovered 2003 is 1st of charmonium-like XYZ states
- Nature is still not understood even after 20 years!



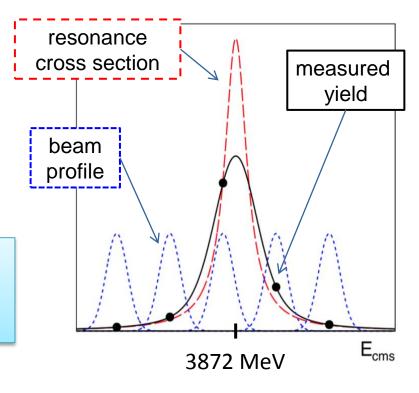

- χ_{c1}(3872) discovered 2003 is 1st of charmonium-like XYZ states
- Nature is still not understood even after 20 years!



- χ_{c1}(3872) discovered 2003 is 1st of charmonium-like XYZ states
- Possible solution:
 - Different internal structure → different production/decay dynamics
 - Line shape of resonance reveals nature!

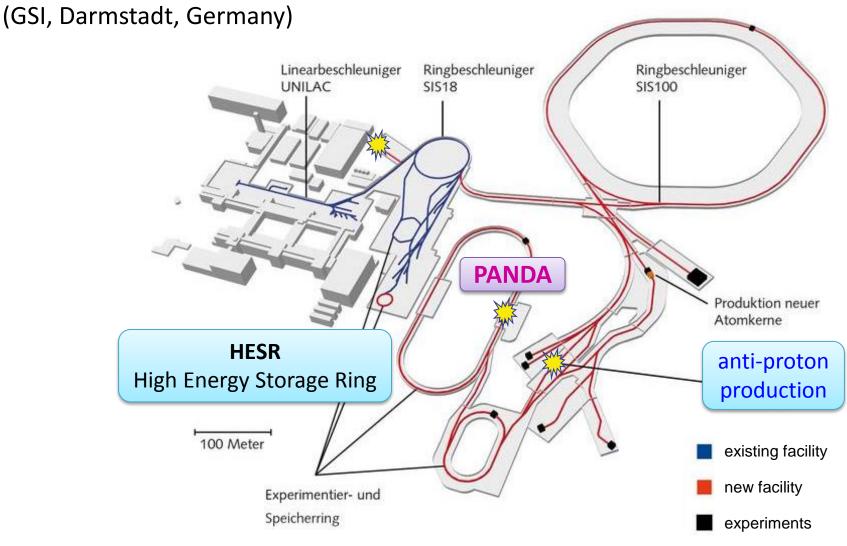


- χ_{c1}(3872) discovered 2003 is 1st of charmonium-like XYZ states
- Possible solution:
 - Different internal structure → different production/decay dynamics
 - Line shape of resonance reveals nature!
 - High resolution needed to resolve structures!


Overcome Detector Resolution ⇒ Formation

• Formation reaction \rightarrow produce $\chi_{c1}(3872)$ [J^{PC} = 1⁺⁺] w/o recoils

- Beam energy spread → resolution
- Measure yield at different E_{cms}


Typical Detector Resolution ≈ 5 MeV
PANDA Beam Resolution ≈ 0.05 MeV

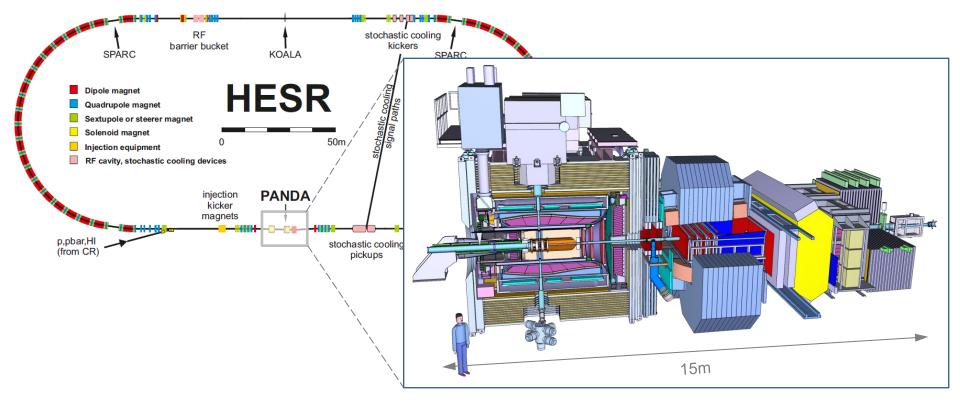
PANDA at FAIR

PANDA at FAIR

Facility for Antiproton and Ion Research

FAIR Construction Site

Good progress at construction site



FAIR Construction Site

Good progress at construction site

PANDA and HESR

HESR mode	d <i>p/p</i>	<i>L</i> _{max} [1/cm²⋅s]	dE _{cm} [keV]
High Luminosity (HL)	1 · 10-4	2.0 · 10 ³²	168
High Resolution (HR)	2 · 10 ⁻⁵	$2.0 \cdot 10^{31}$	34
Phase 1 Mode (P1)	5 · 10 ⁻⁵	2.0 · 10 ³¹	84

@ $E_{cm} = 3872 \text{ MeV}$

SENSITIVITY STUDY

Comprehensive Sensitivity Study

Eur. Phys. J. A (2019) **55**: 42 DOI 10.1140/epja/i2019-12718-2

[https://arxiv.org/abs/1812.05132]

THE EUROPEAN
PHYSICAL JOURNAL A

Regular Article – Experimental Physics

Precision resonance energy scans with the PANDA experiment at FAIR

Sensitivity study for width and line shape measurements of the X(3872)

- Reaction: $\bar{p}p \rightarrow \chi_{c1}(3872) \rightarrow J/\psi (\rightarrow e^+e^-/\mu^+\mu^-) \rho^0 (\rightarrow \pi^+\pi^-)$
- Determine the precision for line-shape measurement at PANDA of
 - Breit-Wigner Width
 - Flatté Energy E_f
- Investigated Parameter Space:

Total beam time:

$$T = 40 \times 2d = 80 d$$

Cross section assumption: $\sigma_{peak}(\bar{p}p \to \chi_{c1}) = 20 ... 150 \text{ nb}$

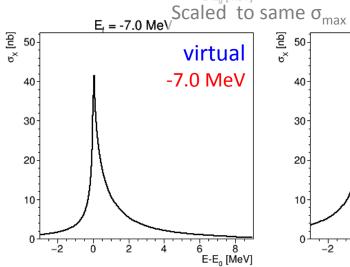
BW Width: $\Gamma = [50, 70, 100, 180, 250, 500] \text{ keV}$

Flatté energy: $E_f = [-10.0, -9.5, -9.0, -8.8, -8.3, -8.0, -7.5, -7.0]$ MeV

Flatté Model

Line shapes for Flatté model [Hanhart et al, PRD 76 (2007) 034007]

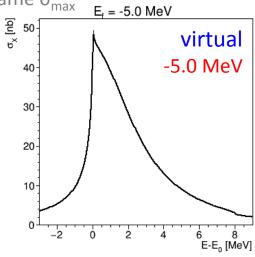
30


20

• Channel: $\chi_{c1}(3872) \rightarrow J/\psi \rho^0$

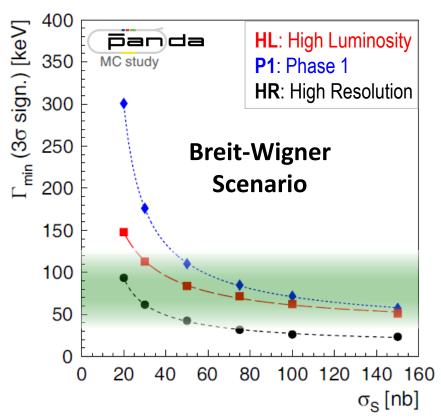
$$\sigma(E; \mathbf{E}_f) \sim \frac{\Gamma_{\pi^+\pi^-J/\psi}(E)}{|D(E; \mathbf{E}_f)|^2}$$

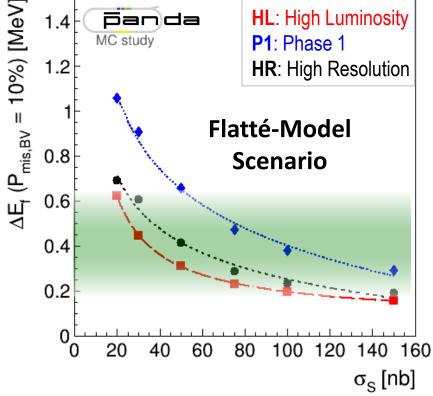
 $E_{t} = -7.0 \text{ MeV}$



 $E_r = -14.0 \text{ MeV}$

bound


 $E_f = -14.0 \text{ MeV}$


(with f_{ρ} =0.00047, f_{ω} =0.00271, g=0.137, Γ_{0} =1.0 MeV)

Precise Line Shape Sensitivity Study

- Expected sensitivity for BW Width Γ & Flatté Parameter E_f
- Breit-Wigner: 3σ precision at down to $\Gamma = O(50 100)$ keV!
- Flatté: Precision in sub-MeV range!

[Eur. Phys. J. A 55 (2019) 3, 42, arXiv:1812.05132]

LHCb Measurement of $\chi_{c1}(3872)$

[Phys.Rev.D 102 (2020) 9, 092005] [https://arxiv.org/abs/2005.13419]

CERN-EP-2020-086 LHCb-PAPER-2020-008 May 27, 2020

Study of the lineshape of the $\chi_{c1}(3872)$ state

Abstract

A study of the lineshape of the $\chi_{c1}(3872)$ state is made using a data sample corresponding to an integrated luminosity of $3 \, \text{fb}^{-1}$ collected in pp collisions at centre-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate $\chi_{c1}(3872)$ mesons from b-hadron decays are selected in the $J/\psi \pi^+\pi^-$ decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the $\chi_{c1}(3872)$ and $\psi(2S)$ states, Δm , and the width of the $\chi_{c1}(3872)$ state, Γ_{BW} , are determined to be

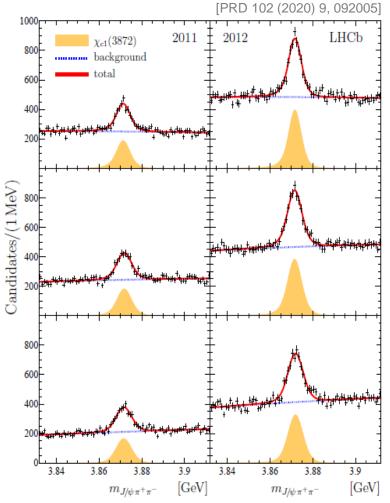
$$\Delta m = 185.588 \pm 0.067 \pm 0.068 \,\text{MeV},$$

$$\Gamma_{\text{BW}} = 1.39 \pm 0.24 \pm 0.10 \,\text{MeV},$$

where the first uncertainty is statistical and the second systematic. Using a Flattéinspired lineshape, two poles for the $\chi_{c1}(3872)$ state in the complex energy plane are found. The dominant pole is compatible with a quasi-bound $D^0 \overline{D}^{*0}$ state but a quasi-virtual state is still allowed at the level of 2 standard deviations.

LHCb Findings

Breit Wigner fit


$$m_{\chi_{c1}(3872)} = 3871.695 \pm 0.067 \pm 0.068 \pm 0.010 \,\text{MeV}$$

 $\Gamma_{\rm BW} = 1.39 \pm 0.24 \pm 0.10 \ {\rm MeV}$

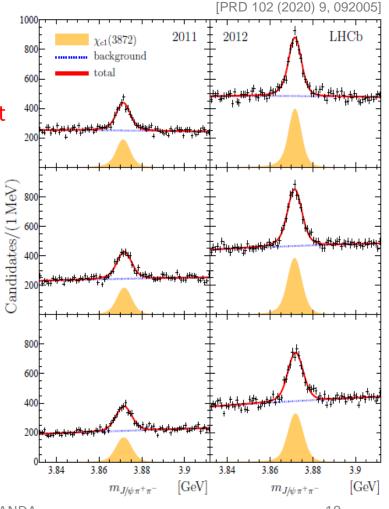
[previous Belle result: Γ < 1.2 MeV (CL90)]

Flatté model fit

Mode [Me	V] M	Iean [MeV]	FWHM [MeV]	
3871.69 + 0.00	$^{+0.05}_{-0.13}$ 3871	$1.66^{+0.07}_{-0.06}^{+0.11}_{-0.13}$	$0.22^{+0.06+0.25}_{-0.08-0.17}$	
g	$f_{ ho} imes 10^3$	$\Gamma_0 \; [{ m MeV}]$	$m_0 [{\rm MeV}]$	
0.108 ± 0.003	1.8 ± 0.6	1.4 ± 0.4 (Flatté energ	3864.5 (fixed) yy E _f = -7.2 MeV)	

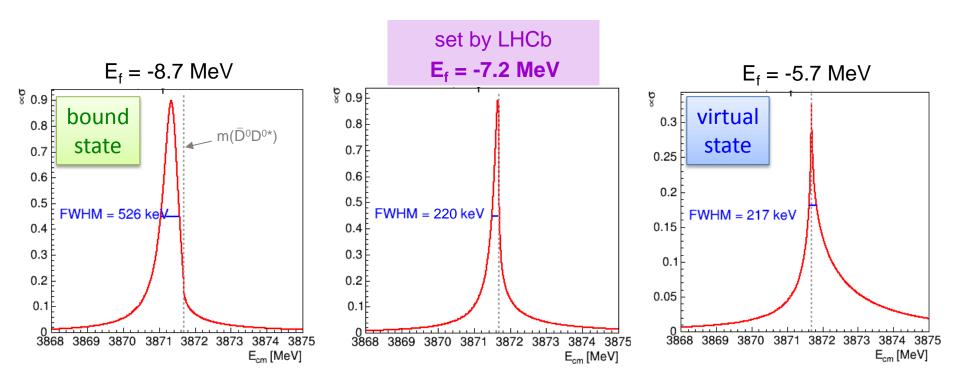
LHCb Findings

Breit Wigner fit


 $m_{\chi_{c1}(3872)} = 3871.695 \pm 0.067 \pm 0.068 \pm 0.010 \, \mathrm{MeV}$ $\Gamma_{\mathrm{BW}} = 1.39 \pm 0.24 \pm 0.10 \, \mathrm{MeV}$ [previous Belle result: $\Gamma < 1.2 \, \mathrm{MeV} \, (\mathrm{CL90})$]

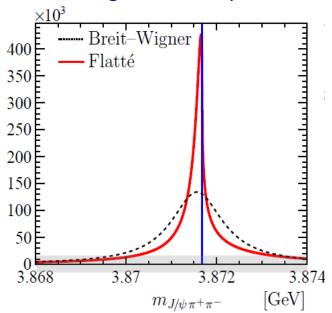
Factor 6.3, analysis dependent

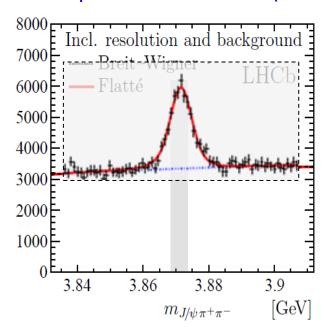
Flatté model fit


Mode [MeV	7] Me	ean [MeV]	FWHM [MeV]	
3871.69 + 0.00 +	$\frac{0.05}{0.13}$ 3871	$.66^{+0.07+0.11}_{-0.06-0.13}$	$0.22^{+0.06+0.25}_{-0.08-0.17}$	
g	$f_{\rho} \times 10^3$	$\Gamma_0 \; [{ m MeV}]$	$m_0 \; [{ m MeV}]$	
0.108 ± 0.003	1.8 ± 0.6	1.4 ± 0.4	3864.5 (fixed)	
	(Flatté energy $E_f = -7.2 \text{ MeV}$)			

→ Need to discriminate models!

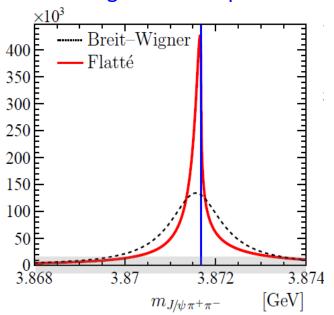
J/ψπ⁺π⁻ Lineshapes


- Flatté Model with LHCb setting
 - ⇒ Slight changes in E_f range

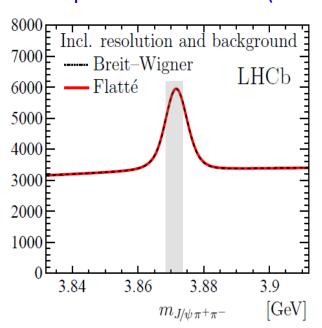

[Hanhart et al, PRD 76 (2007) 034007]

LHCb Lineshapes (incl Resolution)

Lineshapes with resolution (~2.6 MeV)


Quote LHCb:

7.3 Comparison between Breit-Wigner and Flatté lineshapes


Figure 4 shows the comparison between the Breit-Wigner and the Flatté lineshapes. While in both cases the signal peaks at the same mass, the Flatté model results in a significantly narrower lineshape. However, after folding with the resolution function and adding the background, the observable distributions are indistinguishable.

LHCb Lineshapes (incl Resolution)

Lineshapes with resolution (~2.6 MeV)

Quote LHCb:

7.3 Comparison between Breit-Wigner and Flatté lineshapes

Figure 4 shows the comparison between the Breit-Wigner and the Flatté lineshapes. While in both cases the signal peaks at the same mass, the Flatté model results in a significantly narrower lineshape. However, after folding with the resolution function and adding the background, the observable distributions are indistinguishable.

PANDA@HESR Beam Resolution

Due to precise beam resolution

→ Breit-Wigner and Flatté-model are distinguishable

23

Distinguish Breit-Wigner from Flatté

Extension of our previous study:
 Investigate separation power between Flatté & BW lineshapes

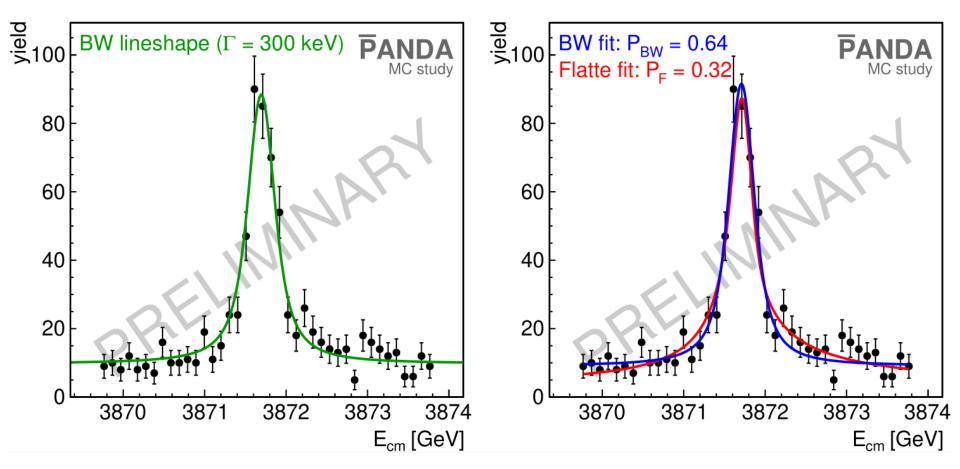
• Take $(\varepsilon_{reco}, \mathcal{B}, \sigma, L, ...)$ to estimate expected yields from study

$$N_{exp}(E_{cms}) = \sigma^*(E_{cms}) \cdot L \cdot t \cdot BR_X \cdot BR_{J/\psi} \cdot \epsilon_{reco}$$

Adapted Parameters:

```
Total beam time: T = 40 \times 2d = 80 d
Cross section assumption: \sigma_{peak}(\bar{p}p \to \chi_{c1}) = 50 \text{ nb}
BW Width: \Gamma = [\ 100,\ 150,\ 200,\ 250,\ 300,\ ...\ ,\ 550\ ] \text{ keV}
Flatté energy: E_f = [\ -8.7,\ -8.2,\ -7.7,\ -7.2,\ -6.7,\ -6.2,\ -5.7,\ -5.2\ ] \text{ MeV}
```

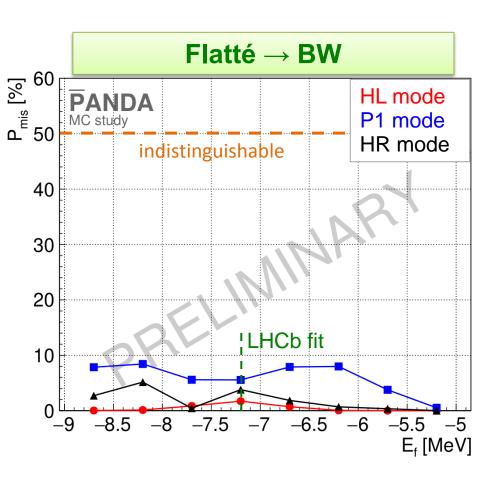
Procedure


We use the following approach:

- 1. Use key parameters from EPJ A 55 (2019) 42
- 2. Generate many (toy) spectra for Flatté (BW) model
- Fit both BW and Flatté to each generated distribution and determine fit probabilities P_{BW} and P_F
- 4. Identification considered correct, if $P_F > P_{BW} (P_{BW} > P_F)$
- 5. Count fraction of incorrect assignments $\rightarrow P_{mis}$
- 6. P_{mis} measure for separation power
- 7. $P_{mis} = 50\%$ means: models indistinguishable

Scan Procedure Principle (Example)

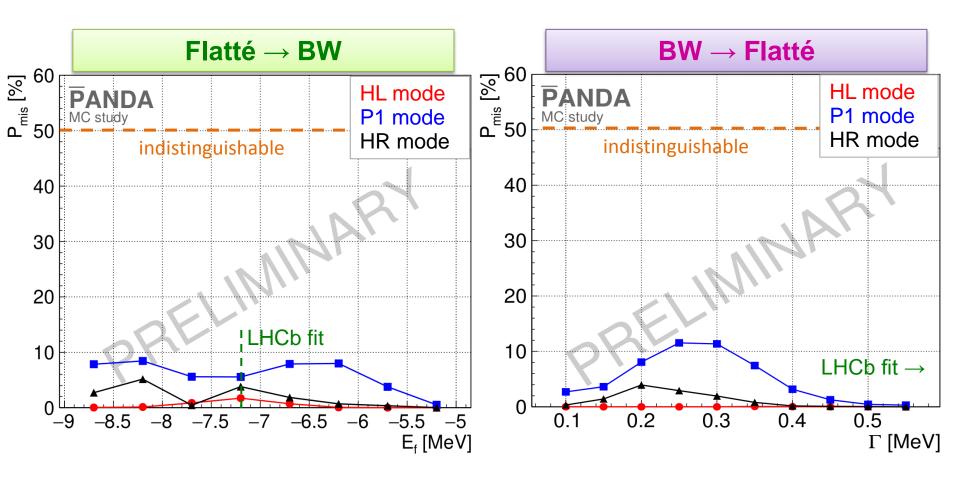
Example: Breit-Wigner, $\Gamma = 300 \text{ keV}$ (P1 mode)


- 1. Compute true lineshape reflecting the expected yields
- 2. Fit lineshapes to extract fit probabilities P_{BW} and P_F

RESULTS

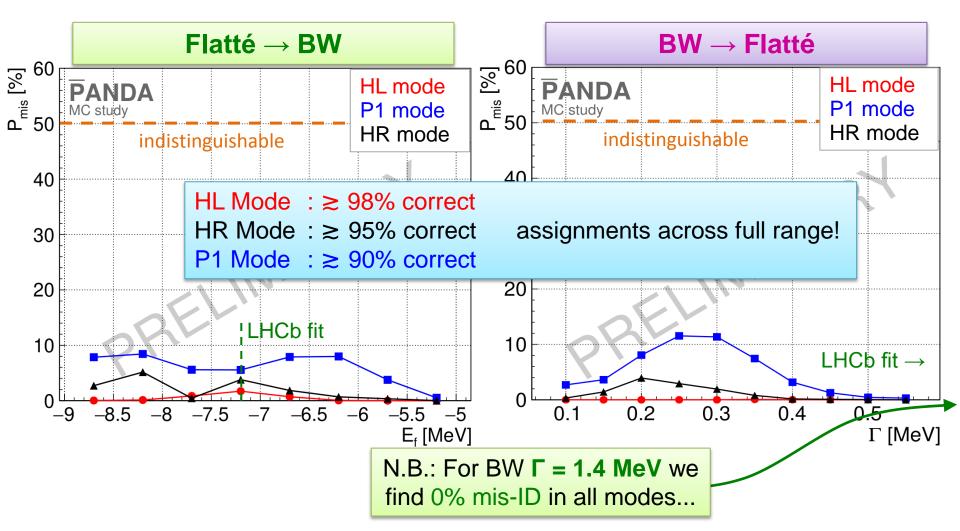
Parameter Dependent Performance

Performance across Flatté energy E_f range



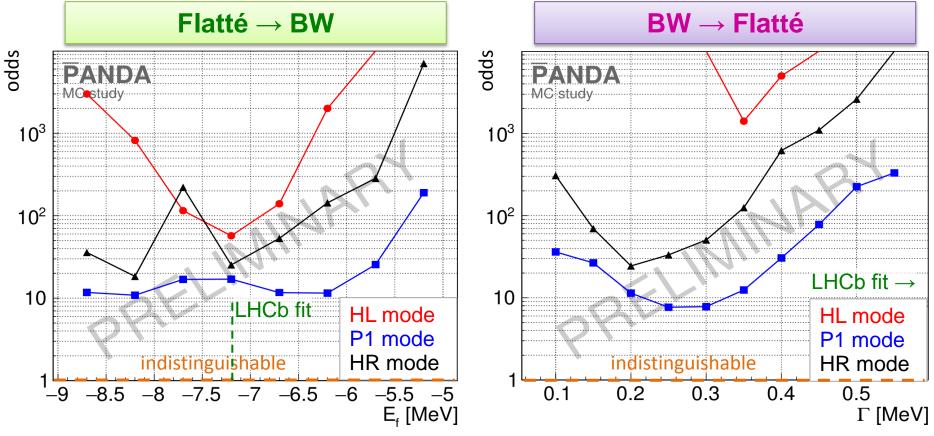
For Mis-match of Flatté as BW we see

- for the three beam modes HL, HR, P1
- the mis-identification probability P_{mis}
- across range of input parameters E_f
- with **LHCb** best fit $E_f = -7.2 \text{ MeV}$
- and $P_{mis} = 50\%$ for "indistinguishable"


Parameter Dependent Performance

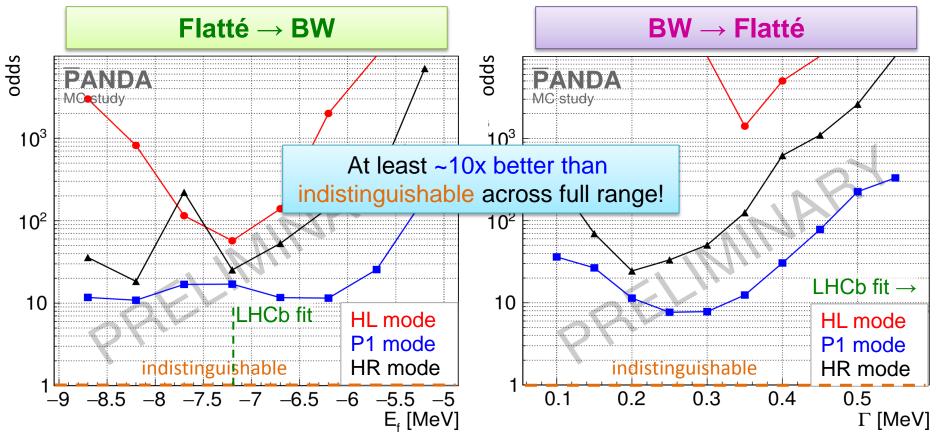
Performance across Flatté energy E_f / Breit-Wigner Γ range

Parameter Dependent Performance


Performance across Flatté energy E_f / Breit-Wigner Γ range

Performance - Alternative Representation

- How much better than "indistinguishable" is it?
- Idea: Consider so-called **odds** = correct identifications per wrong one


odds =
$$(1 - P_{mis}) / P_{mis}$$

Performance - Alternative Representation

- How much better than "indistinguishable" is it?
- Idea: Consider so-called odds = correct identifications per wrong one

odds =
$$(1 - P_{mis}) / P_{mis}$$

Summary and Conclusion

- Line shape measurement of χ_{c1}(3872) at PANDA
 - ⇒ Different models can be well distinguished
- Correct assignment of fit model over full range between ≥90% (P1) and ≥98% (HL) depending on beam mode
- At least ~10x higher odds to identify correct model than LHCb

Summary and Conclusion

- Line shape measurement of $\chi_{c1}(3872)$ at **PANDA**
 - ⇒ Different models can be well distinguished
- Correct assignment of fit model over full range between ≥90% (P1) and ≥98% (HL) depending on beam mode
- At least ~10x higher odds to identify correct model than LHCb

Thank you very much for your attention!