Recent dark sector results at Belle II

For the Belle II collaboration, Shintaro Ito (KEK) 2022 August 17th @ Phi to Psi 2022

Outline

- Dark matter.
- SuperKEKB and Belle II.
- Dark sector at Belle II.
- New results of dark sector searches.
 - Dark Higgsstrahlung
 - $Z' \rightarrow \text{invisible}$
 - Z', S, $ALP \rightarrow \tau \tau$
- Summary and future prospects.

Dark Matter

- · There are some evidences for existence of dark matter,
 - Galaxy rotation curve.
 - Gravitational lens.
 - Measurement of cosmic microwave background.
 - → Density of dark matter in universe: 26.8%
- However, dark matter is not included in the SM.
 - Many searches have been performed, but not observed yet.

- Dark matter is one of the most important problem in physics.

26.8%

68.3%

Dark Matter

SuperKEKB and Belle II

- Belle II at SuperKEKB: e^+e^- collider experiment.
 - Mainly e^+e^- → Υ(4S) → $B\bar{B}$ with $\sqrt{s}=10.58$ GeV (others: Υ(nS) with $\sqrt{s}\simeq 10$ GeV/ c^2).
 - Flavor physics, dark matter searches, and so on.
- . Until the run in June 2022, $\mathcal{L}_{peak} = 4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ (world record) and $\mathcal{L}_{int} = 424 \text{ fb}^{-1}$.

→ Goal of Belle II: $\mathcal{L}_{int} = 50 \text{ ab}^{-1}$

From inside			
PXD	Vertex		
SVD	Vertex, track		
CDC	Track, momentum		
TOP, ARICH	K/π ID		
ECL	Photon, electron		
KLM	K _L 、μ ID		

Dark Sector Searches in Belle II

. $\sqrt{s} = 10.58$ GeV so mass up to ~ 10 GeV/ c^2 would be search region.

Dark sectors ← (Mediators (portal particles)) → SM particles

- Scalar portal: dark Higgs

- Pseudo scalar portal: axion, ALPs
- Vector portal: dark photon, Z' Fermion portal: sterile neutrinos (and more?)
 - → These may also explain anomaly of muon g-2.
- Typical processes
 - $-e^+e^-$ → SM particles + X (visible or invisible) e.g. e^+e^- → $\mu^+\mu^-$ Z', Z' → visible or invisible.
 - B (or others e.g. τ) \to SM particles + X (visible or invisible) e.g. $B \to Ka$
- Some of these processes have not been sought in the Belle or BaBar experiments, and could be searched in Belle II by improvement of trigger condition.

Dark Higgsstrahlung: $e^+e^- \rightarrow A'h'$

- Dark Higgsstrahlung process $e^+e^- \to A'h'$ (Phys. Rev. D 79, 115008 (2009))
 - Dark photon A'
 - couples to the SM with kinematic mixing ϵ
 - Dark Higgs h'
 - $ightharpoonup M_{A'}$ can arise from spontaneous symmetry breaking
 - no mixing with the SM Higgs.
 - couples with the constant α_D
 - ightharpoonup The cross section for dark Higgsstrahlung $\sigma \propto \epsilon^2 \alpha_D$.
- . $M_{h'} > M_{A'}$: dark Higgs is visible: $h' \to two dark photons$
 - Constrained by Belle and BaBar ($\epsilon^2 \alpha_D < 10^{-9} \sim 10^{-8}$). $M_{h'}$
- . $M_{h'} < M_{A'}$: dark Higgs is invisible
 - → Only searched for by KLOE.
 - → Large room to be searched for.

Dark Higgsstrahlung: $e^+e^- \rightarrow A'h'$ Analysis

- Data set: 8.34 fb⁻¹ (2019)
- . Scan $M_{\rm reco}$ vs $M_{\mu\mu}$ plot \Rightarrow about 9,000 overlapping elliptical mass windows.
 - _ Dark photon: $A' \rightarrow \mu^+ \mu^-$, $M_{\mu\mu} > 1.65$ GeV/ c^2 due to dimuon trigger efficiency.
 - Dark Higgs: invisible, recoil mass $M_{\rm recoil}$ against dimuon system.
- . Dominant backgrounds: $e^+e^- \to \mu^+\mu^-(\gamma)$ (79%), $e^+e^- \to \tau^+\tau^-(\gamma)$ (18%), $e^+e^- \to \mu^+\mu^-e^+e^-$ (3%)

Dark Higgsstrahlung: $e^+e^- \rightarrow A'h'$ Results

- No excess beyond background found.
- . 90% ULs were set on σ and $\epsilon^2 \alpha_D$.
- . World first results for $1.65 < M_{A'} < 10.51 \text{ GeV}/c^2$
 - →arXiv:2207.00509

 $M_{h'}$ [GeV/ c^2]

 10^{-8}

Z' in $L_{\mu}-L_{\tau}$ Model

- . The $L_{\mu}-L_{\tau}$ extension of the SM (PRD 89 113004 (2014), JHEP 12 (2016) 106) gauges the difference of the leptonic muon and tau number.
 - → New vector boson Z', couples to only 2nd and 3rd lepton family.
- This may solve
 - Dark matter phenomenology
 - Muon g-2 discrepancy between data and theory
 - Anomalies reported in LHCb (R_K, R_{K*}).
- New results
 - $Z' \rightarrow \text{invisible } (e^+e^- \rightarrow \mu^+\mu^- + \text{missing})$
 - $Z' \to \tau \tau (e^+ e^- \to \mu^+ \mu^- Z')$

Invisible Z' Analysis

- Initial analysis (276 pb⁻¹) was published in PRL 124, 141801 (2020).
 - → Updated using 2019-2020 data, 79.7 fb⁻¹.
 - → Event selection cuts were optimized with introducing NN.
- . Search for bumps in recoil mass M_{recoil} against dimuon.
- . Dominant backgrounds are $e^+e^- \to \mu^+\mu^-(\gamma)$, $e^+e^- \to \tau^+\tau^-(\gamma)$, and $e^+e^- \to \mu^+\mu^-e^+e^-$.

10

Results of Invisible Z' Search

- No excess above background was found.
- 90% CL ULs were set on the cross section σ and coupling g'.
 - \Rightarrow If mass of dark matter is $< m_{Z'}/2$, $BF(Z' \to \text{invisible}) \approx 100 \%$.
 - \rightarrow Fully invisible Z' as origin of $(g-2)_{\mu}$ was excluded for $0.8 < M_{Z'} < 5.0 \text{ GeV}/c^2$.

Z', S, $ALP \rightarrow \tau\tau$

- . New results for $e^+e^- \to \mu^+\mu^- Z', S, ALP$ and $Z', S, ALP \to \tau\tau$
 - $Z': L_{\mu} L_{\tau}$ model.
 - S: dark leptophilic scalar model, PRL 125, 181801 (2020).
 - ALP: JHEP12 (2017) 044 (different model with $a \rightarrow \gamma \gamma$)
 - \rightarrow First search of these decays into $\tau\tau$.
- Analysis using 2019-2020 data set, 63.3 fb⁻¹.
 - Scan recoil mass $M_{\text{recoil}}(\mu\mu)$
 - Background suppression with NN.

 \times Initial analysis $e^+e^- \rightarrow \gamma a$, $a \rightarrow \gamma \gamma$ was performed and published in PRL 125, 161806 (2020)

Results of Z', S, ALP $\rightarrow \tau\tau$ Search

- No excess found.
- Set 90% CL ULs on the cross section and couplings for several models.
 - First constraint on S for $M_S > 6.5 \text{ GeV}/c^2$.
 - First direct search for ALP $\rightarrow \tau\tau$.

Summary & Future Prospects

- Dark sector scenarios are very important.
- · Belle II is good playgrounds for dark sector searches.
 - → At present, 424 fb⁻¹ has been collected.
- New results: world leading results has been obtained.
 - Dark Higgsstrahlung: arXiv: 2207.00509.
 - $Z' \rightarrow \text{invisible}$
 - Z', S, $ALP \rightarrow \tau\tau$ \Rightarrow Papers are under preparation.
- · Many other dark sector searches are ongoing, e.g.
 - $B \rightarrow Ka$: heavy QCD axion ($a \rightarrow$ hadrons), ALPs ($a \rightarrow \gamma\gamma$)
 - $B \rightarrow KS$: dark scalar $(S \rightarrow \ell^+ \ell^-)$
 - $-e^+e^- \rightarrow \gamma A', A' \rightarrow \text{invisible}$
 - → More world leading results are expected.

PRD 104, 055036 (2021)

Backup

Dark Higgsstrahlung

Dark Higgsstrahlung

Z' Invisible

- $\tau^+\tau^-(\gamma)$ almost 100% suppressed
- $\mu^+\mu^-(\gamma)$ dominates up to ~7 GeV/c²
- e⁺e⁻ μ⁺μ⁻ dominates for high masses

Look for bumps in θ_{recoil} vs M^2_{recoil}

3 control samples μμγ selection+NN studies low mass eμ selection+NN studies medium+high mass ee(γ) γ veto studies

$Z' \rightarrow Invisible$

- $\tau^+\tau^-(\gamma)$ almost 100% suppressed
- $\mu^{+}\mu^{-}(\gamma)$ dominates up to ~7 GeV/c²
- e⁺e⁻ μ⁺μ⁻ dominates for high masses

Look for bumps in θ_{recoil} vs M^2_{recoil}

3 control samples

μμγ selection+NN studies low mass eμ selection+NN studies medium+high mass ee(γ) γ veto studies

Systematics

Source	Low mass	Medium mass	High mass
selections	2.7%	6.5%	8.3%
Mass resolution	10%	10%	10%
Background shapes	3.2%	8.6%	25%
Photon veto	34%	5%	5%
luminosity	1%	1%	1%

$Z' \rightarrow \tau \tau$

- Background suppression: MLP (Multi-Layer Perceptron (NN)) based
 - \Rightarrow 14 variables for the MVA training: sensitive to the presence of $\tau\tau$ resonance produced as FSR from one of the 2 μ

