

Charmed baryons results at Belle

Xuyang Gao for Belle Collaboration gaoxy@fudan.edu.cn

The 13^{th} International Workshop on e^+e^- collisions from Phi to Psi

2022-08-15

Belle experiment

Charmed baryon production at B-factory

- B meson is efficiently produced via $\Upsilon(4S)$
- Once bottom is produced, it favorably decays into charm

Baryons produced via fragmentation

- Charmed baryons rather direct
- Hyperons later stage of fragmentation

Integrated luminosity of B factories

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

Huge statistics

The charmed baryon physics

- The weak decay of charmed baryon is not understood well.
 - Three diagrams contribute to in the tree level, strength of each is not known
- Ground state charmed baryon is a good laboratory to study strange baryons as decay proceed via $c \rightarrow s$ transition.

- Belle has collected $\sim 1 ab^{-1} e^+ e^-$ data samples (mainly at $\Upsilon(4S)$).
 - $10^9 e^+e^- \rightarrow c\bar{c}$ samples
 - $7.7 \times 10^8 B\overline{B}$ samples
- Huge data sample enable to study various charmed baryons.

Charmed baryon resent results at Belle

Process	Reference	Physics Covered
$\Omega_c^0 \to \pi^+[\Omega(2012)^- \to \bar{K}\Xi]$	PRD 104, 052005 (2021)	Evidence: 4.2 σ
$\Lambda_c^+ o p \pi^0 / p \eta$	PRD 103, 072004 (2021)	SCS decays
$\Lambda_c^+ o p\omega$	PRD 104, 072008 (2021)	SCS decay, 3pi mode
$\Lambda_c^+ o p\eta'$	JHEP 03, 090 (2022)	SCS decay, 5.4 σ
$\Lambda_c^+ \to \eta \Lambda \pi^+$	PRD 103, 052005 (2021)	$\Lambda(1670), \Sigma(1385)^+$
$\Lambda_c^+ \to \Lambda h^+ / \Sigma^0 h^+$	Belle note #625	Direct CPV search, Br, Acp
$\Lambda_c^+ \to \Sigma^+ \pi^0 / \Sigma^+ \eta / \Lambda_c^+ \to \Sigma^+ \eta'$	Belle note #626	Br, Acp
$\Lambda_c^+\to \Sigma^+\gamma/\Xi_c^0\to \Xi^0\gamma$	arXiv: 2206.12517	Weak radiative decays, UL
$\Xi_c^0 \to \Lambda K_S^0 / \Sigma^0 K_S^0 / \Sigma^+ K^-$	PRD 105, L011102 (2022)	Br, CF decays
$\Xi_c^0 \to \Xi^- \ell^+ \nu_\ell$	PRL 127, 121803 (2021)	Br, Acp, LFU
$\Xi_c^0 \to \Lambda_c^+ \pi^-$	arXiv: 2206.08527	Heavy-flavor-conserving decay
$\Omega_c^0 o \Omega^- \ell^+ \nu_\ell$	PRD 105, L091101 (2022)	Br, LFU
$\Sigma_c(2455)^+, \Sigma(2520)^+$	PRD 104, 052003 (2021)	mass and widths
$\Sigma_{c}(2455)^{0,++}\pi^{\pm}$	arXiv: 2206.08822	New excited charmed baryon, 4.2 σ

Evidence for $\Omega_c^0 \to \pi^+[\Omega(2012)^- \to \overline{K}\Xi]$

- Searching for new production model is very important to understand the nature of $\Omega(2012)^-$
- A theoretical study of the $\Omega(2012)^-$ in the nonleptonic weak decays of $\Omega_c^0 \rightarrow \pi^+(\overline{K}\Xi)^-$ was reported [1]
- We do the search in both $K_S^0 \Xi^-$ and $K^- \Xi^0$ final states

—Signal Data — Signal (\mathbf{a}) (b) Events / 5 MeV/c² Events / 5 MeV/c² -All Fit --- BKG Fit --- BKG 40 **4**.2σ 20 2.6 2.2 2.7 1.9 2 21 2.8 $M((\overline{K}\Xi))$ GeV/c² $M(\pi^+\Omega(2012))$ GeV/c² $\mathcal{B}(\Omega_c^0 \to \pi^+ \Omega(2012)^-) \times \mathcal{B}(\Omega(2012)^- \to (\bar{K}\Xi)^-)$ Combined [1] PRD 102, 076009 $\mathcal{B}(\Omega^0_c \to \pi^+ \Omega^-)$ $N_{\rm sig.}^{\rm obs} \times \epsilon_{\pi^+\Omega^-}$ $\overline{N_{\pi^+\Omega^-}^{\text{obs}} \times (f_1 \times \epsilon_1 \times \mathcal{B}_1 + f_2 \times \epsilon_2 \times \mathcal{B}_2)}$ 0.220 ± 0.059 (stat.) ± 0.035 (syst.),

PRD 104, 052005 (2021)

Measurement of $\Lambda_c^+ ightarrow p\pi^0/p\eta$

Measurement of $\Lambda_c^+ ightarrow p\pi^0/p\eta$

(a, b) Internal W emission(c, d, e) W exchange(f) Internal W emission

PRD 103, 072004 (2021)

- The W-boson exchange mechanism plays an important role in the decay of charmed baryons.
- Thus, measuring the branching fractions of these two Singly Cabibbo-Supressed decays will help elucidate the decay mechanism of charmed baryons.

 $Br(\Lambda_c^+ \to p\pi^0) < 8 \times 10^{-5} @ 90\% \text{ C.L.}$ $Br(\Lambda_c^+ \to p\eta) = (1.42 \pm 0.05 \pm 0.11) \times 10^{-3}$ 8

Observation of $\Lambda_c^+ o p\omega$, $\Lambda_c^+ o p\eta'$

- LHCb reported the first observation of a SCS decay $\Lambda_c^+ \rightarrow p\omega[\rightarrow \mu^+\mu^-]$, Br $(\Lambda_c^+ \rightarrow p\omega) = (9.4 \pm 3.9) \times 10^{-4}$
- We perform same measurement by reconstructing $\omega \rightarrow \pi^+ \pi^- \pi^0$ decay

- Most precise measurement
- Consistent with LCHb result

- First observation of Λ_c^+ in $\Lambda_c^+ \to p\eta'$
- Consistent with the $SU(3)_F$ calculation

Measurements of $\Lambda_c^+ \to \Lambda h^+$, $\Sigma^0 h^+ (h^+ = K, \pi)$

- SCS decays of charmed hadrons provide an ideal laboratory for studying CPV [1,2]
- The only observation of CPV in charm sector was made by LHCb $D^0 \rightarrow h^+h^-$ [3]
- Direct CPV searches in two-body SCS:
 - No good theoretical predication, no experimental measurements

$$A_{\rm raw}^{\rm corr}(\Lambda_c^+ \to \Lambda K^+) - A_{\rm raw}^{\rm corr}(\Lambda_c^+ \to \Lambda \pi^+) = A_{CP}^{\rm dir}(\Lambda_c^+ \to \Lambda K^+) - \overline{A_{CP}^{\rm dir}(\Lambda_c^+ \to \Lambda \pi^+)}. \qquad A_{\rm raw} = \frac{N(\Lambda_c^+ \to f) - N(\overline{\Lambda_c^-} \to \overline{f})}{N(\Lambda_c^+ \to f) + N(\overline{\Lambda_c^-} \to \overline{f})}$$

• We can also measure the decay asymmetry parameters

$$\begin{split} A^{\alpha}_{CP}(\text{total}) &= \frac{\alpha_{\Lambda^+_c} \alpha_- - \alpha_{\overline{\Lambda}^-_c} \alpha_+}{\alpha_{\Lambda^+_c} \alpha_- + \alpha_{\overline{\Lambda}^-_c} \alpha_+}, \qquad \qquad \frac{dN}{d\cos\theta_{\Lambda}} \propto 1 + \alpha_{\Lambda^+_c} \alpha_- \cos\theta_{\Lambda} \\ A^{\alpha}_{CP}(\text{total}) &= A^{\alpha}_{CP}(\Lambda \to p\pi^-) \qquad \qquad \frac{dN}{d\cos\theta_{\Sigma^0} d\cos\theta_{\Lambda}} \propto 1 - \alpha_{\Lambda^+_c} \alpha_- \cos\theta_{\Sigma^0} \cos\theta_{\Lambda} \end{split}$$

 θ_{Λ} (θ_{Σ^0}) is the angle between the proton (Λ) momentum vector and the opposite of the Σ^0 (Λ_c^+) momentum vector in the Λ (Σ^0) rest frame; $\alpha_- = 0.7542 \pm 0.0022$ from world average value measured by BESIII.

[1] PRD 86, 616 014023 (2012)

[2] PRD 85, 034036618 (2012)

[3] PRL 627 122, 211803 (2019)

And branching fractions

$$rac{\mathcal{B}_{
m sig}}{\mathcal{B}_{
m ref}} = rac{N_{
m sig}/arepsilon_{
m sig}}{N_{
m ref}/arepsilon_{
m ref}}\,,$$

Measurements of $\Lambda_c^+ \rightarrow \Lambda h^+$, $\Sigma^0 h^+ (h^+ = K, \pi)$

Branching fraction measurements:

 $Br(\Lambda_c^+ \to \Lambda K^+) = (6.57 \pm 0.17 \pm 0.11 \pm 0.35) \times 10^{-4}$ $Br(\Lambda_c^+ \to \Sigma^0 K^+) = (3.58 \pm 0.19 \pm 0.06 \pm 0.19) \times 10^{-4}$

Significantly improved precision

Preliminary result

11

Measurements of $\Lambda_c^+ \rightarrow \Lambda h^+$, $\Sigma^0 h^+ (h^+ = K, \pi)$

Averaged decay asymmetry parameters:

- First measurements of *K*⁺ modes
- Improved precision of π^+ modes

 α -induced CP asymmetry:

First measurements of A^α_{CP} for SCS decays of charmed baryons

 Λ -hyperon CP violation:

• First measurement of hyperon CPV searches in CF charm decays.

No evidence of baryon CPV is found

$\alpha_{\rm avg}(\Lambda_c^+ \to \Lambda K^+)$	=	-0.585	± 0.049	$\pm0.018,$	
$lpha_{ m avg}(\Lambda_c^+ o \Lambda \pi^+)$	=	-0.755	± 0.005	$\pm \ 0.003$,	
$\alpha_{\rm avg}(\Lambda_c^+ \to \Sigma^0 K^+)$	=	-0.55	± 0.18	$\pm \ 0.09 \ ,$	
$\alpha_{\rm avg}(\Lambda_c^+ \to \Sigma^0 \pi^+)$	=	-0.463	± 0.016	$\pm \ 0.008$,	

Channel	$A^{lpha}_{C\!P}$
$\Lambda_c^+ \to \Lambda K^+$	$-0.023 \pm 0.086 \pm 0.071$
$\Lambda_c^+ \to \Lambda \pi^+$	$+0.020 \pm 0.007 \pm 0.013$ -
$\Lambda_c^+ \to \Sigma^0 K^+$	$+0.08 \pm 0.35 \pm 0.14$
$\Lambda_c^+ \to \Sigma^0 \pi^+$	$-0.023 \pm 0.034 \pm 0.030$
$ \begin{array}{c} \Lambda_c^+ \to \Sigma^0 K^+ \\ \Lambda_c^+ \to \Sigma^0 \pi^+ \end{array} $	$\begin{array}{c} +0.08 \pm 0.35 \pm 0.14 \\ -0.023 \pm 0.034 \pm 0.030 \end{array}$

 $A^{\alpha}_{CP} = +0.013 \pm 0.007 \pm 0.011$

Preliminary result

Measurements of $\Lambda_c^+ \to \Sigma^+ \pi^0$, $\Lambda_c^+ \to \Sigma^+ \eta$, $\Lambda_c^+ \to \Sigma^+ \eta'$

• Measure branching fractions and asymmetry parameters of charmed baryon weak decays: $B_c \rightarrow B + M$ (M is pseudoscalar or vector meson)

Decay	Körner [1]	Ivanov [2]	Żenczykowski [7]	Sharma [8]	Zou [10]	Geng [11]	Experiment [12]	
$\Lambda_c^+ \rightarrow \Sigma^+ \eta$	0.16	0.11	0.90	0.57	0.74	$0.32{\pm}0.13$	$0.44{\pm}0.20$	Branching
$\Lambda_c^+ \rightarrow \Sigma^+ \eta'$	1.28	0.12	0.11	0.10	_	$1.44{\pm}0.56$	1.5 ± 0.6	fraction
$\Lambda_c^+ \rightarrow \Sigma^+ \pi^0$	0.70	0.43	0.39	-0.31	-0.76	$-0.35{\pm}0.27$	$-0.55{\pm}0.11$	Indecion
$\Lambda_c^+ \rightarrow \Sigma^+ \eta$	0.33	0.55	0.00	-0.91	-0.95	$-0.40{\pm}0.47$	-	Asymmetry
$\Lambda_c^+ \rightarrow \Sigma^+ \eta'$	-0.45	-0.05	-0.91	0.78	_	$1.00\substack{+0.00\\-0.17}$	_ <	parameter

13

- The rates of $\Lambda_c^+ \to \Sigma^+ \eta$ and $\Lambda_c^+ \to \Sigma^+ \eta'$ are naively comparable or the former is larger than the latter. However, the branching fraction of $\Lambda_c^+ \to \Sigma^+ \eta'$ measured by BESIII was found to be larger than the $\Lambda_c^+ \to \Sigma^+ \eta$ mode. $\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')}{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)} = 3.5 \pm 2.1 \pm 0.4$.
- Compare the asymmetry parameters of $\Lambda_c^+ \to \Sigma^+ \pi^0$ and $\Lambda_c^+ \to \Sigma^0 \pi^+$ could test the isospin symmetry.

Measurements of $\Lambda_c^+ \to \Sigma^+ \pi^0$, $\Lambda_c^+ \to \Sigma^+ \eta$, $\Lambda_c^+ \to \Sigma^+ \eta'$

 $\alpha_{\Sigma^+\pi^0} = -0.48 \pm 0.02 \pm 0.02$

Agrees with the world average value: -0.55 ± 0.11 in much improved precision. Consistent with $\alpha_{\Sigma^0 \pi^+} = -0.463 \pm 0.016 \pm 0.008$, no isospin symmetry broken. $\alpha_{\Sigma^+ \eta} = -0.99 \pm 0.03 \pm 0.05$ and $\alpha_{\Sigma^+ \eta'} = -0.46 \pm 0.06 \pm 0.03$ Measured for the first time.

Preliminary result

First search for the weak radiative decays $\Lambda_c^+ \rightarrow \Sigma^+ \gamma$ and $\Xi_c^0 \rightarrow \Xi^0 \gamma$

- Weak radiative decays of charmed hadrons are dominated by the long-range nonperturbative processes that can enhance the branching fractions up to 10⁻⁴, whereas short-range interactions are predicted to yield rates at the level of 10⁻⁸[1,2]
- At the CF level, there are two decay modes for the weak radiative decays of anti-triplet charmed baryons induced from $cd \rightarrow us + \gamma$, i.e., $\Lambda_c^+ \rightarrow \Sigma^+ \gamma$ and $\Xi_c^0 \rightarrow \Xi^0 \gamma$ decays.

arXiv:2206.12517

First search for the weak radiative decays $\Lambda_c^+ \rightarrow \Sigma^+ \gamma \text{ and } \Xi_c^0 \rightarrow \Xi^0 \gamma$ arXiv:2206.12517

• There are no evident $\Lambda_c^+ \to \Sigma^+ \gamma$ or $\Xi_c^0 \to \Xi^0 \gamma$ signals. The signal significance of $\Lambda_c^+ \to \Sigma^+ \gamma$ decay is only 2.2 σ , after considering the systematic uncertainty.

• Taking $\Lambda_c^+ \to pK^-\pi^+$ and $\Xi_c^0 \to \Xi^-\pi^+$ as normalization channels, the upper limits at 90% confidence level (C.L.) on the ratios of branching fractions are

$$\frac{Br(\Lambda_{c}^{+} \to \Sigma^{+} \gamma)}{Br(\Lambda_{c}^{+} \to pK^{-}\pi^{+})} < 3.99 \times 10^{-3} \qquad \qquad \frac{Br(\Xi_{c}^{0} \to \Xi^{0} \gamma)}{Br(\Xi_{c}^{0} \to \Xi^{-}\pi^{+})} < 1.15 \times 10^{-2}$$

• The upper limits at 90% C.L. on the absolute branching fractions are determine:

 $Br(\Lambda_c^+ \to \Sigma^+ \gamma) < 2.55 \times 10^{-4}$

$$Br(\Xi_c^0 \to \Xi^0 \gamma) < 1.73 \times 10^{-4}$$

Measurements of $Br(\Xi_c^0 \to \Lambda_c^+ \pi^-)$

arXiv:2206.08527

- The heavy-flavor-conserving nonleptonic decays in charmed baryons containing both an s and a c quark, that proceeds via the decay of the s quark, i.e. $\Xi_c^0 \to \Lambda_c^+ \pi^-$.
- The decay width of $\Xi_c^0 \to \Lambda_c^+ \pi^-$ is based on the size of the *s* quark decay amplitude of $s \to u(\bar{u}d)$ and the weak scattering amplitude $cs \to dc$.

 $Br(\Xi_c^0 \to \Lambda_c^+ \pi^-) = (6.8 \pm 0.6 \pm 0.6 \pm 2.0) \times 10^{-3}$

• The result is consistent with previous measurement by LHCb experiment and recent theoretical calculation, and larger than the previous theoretical predictions.

Measurements of $\Omega_c^0 \to \Omega^- l^+ \nu$ and $\Xi_c^0 \to \Xi^- l^+ \nu$

18

Semi-leptonic decays of charmed baryons:

- Ideal test of QCD in transition region of (non-)perturbative.
- The cleanest processes among charm decays
- Test lepton flavor universality (LFU).

Experimentally:

- BESIII measured the $\mathcal{B}(\Lambda_c^+ \to \Lambda l^+ \nu)$
- ARGUS and CLEOII measured $\mathcal{B}(\Xi_c \rightarrow \Xi \ l^+ \nu)$
- CLEO measured $\mathcal{B}(\Omega_c^0 \to \Omega^- e^+ \nu)$

 $\begin{aligned} & \mathcal{B}(\Lambda_c^+ \to \Lambda \; e^+ \nu_e) = (3.6 \pm 0.4)\% \; \text{PRL 115, 221805(2015)} \\ & \mathcal{B}(\Lambda_c^+ \to \Lambda \; \mu^+ \nu_e) = (3.5 \pm 0.4)\% \; \text{PLB 767, 42 (2017)} \end{aligned}$

large uncertainty

Measurements of $\Omega_c^0 \to \Omega^- l^+ \nu$ and $\Xi_c^0 \to \Xi^- l^+ \nu$

19

- The doubly-charged and neutral Σ_c states are well studied.
- However, there is comparatively little experimental information on the singlycharged Σ_c^+ states due to π^0 transition.
- Good tests of models of isospin mass splittings, most mass models predict Σ_c^+ states have masses a little lower than doubly-charged and neutral analogs.
- Reconstruct Σ_c^+ baryons from $\Lambda_c^+ \pi^0$ decays. Fits performed to limited-range subsets

First non-zero measurements of the intrinsic widths. No deviation from the expectations of their isospin partners

- arXiv: 2206.08822
- 21
- Charmed baryons are good platform to study related theories such as HQET.
- High mass excited states are still not well understood.
- Most of Λ_c^+ excited states decay (via Σ_c) to $\Lambda_c^+ \pi \pi$ final states

Experimentally

- $\overline{\mathrm{B}}{}^{0} o \Lambda_{\mathrm{c}} \pi \pi \overline{p}$ is a promising channel to study
- Low background contributions
- High branching fraction $\sim 10^{-4}$
- Large $B\overline{B}$ sample: 772 \times 10⁶

B^0 Decay Modes

 Γ_{500}

 Γ_{501}

 Γ_{502}

baryon

meson

quarkonium

baryon

22

- $\Lambda_c(2940) \rightarrow \Sigma_c(2455)\pi$ is the current highest mass Λ_c excited state
- LHCb result prefers $J^P = \frac{3}{2}^-$, but doesn't exclude other values [JHEP 05, 030 (2017)].
- The mass of $\Lambda_c(2940)$ is lower than predication of contradictory quark model.

- $\Lambda_c(2940)$ has $J^P = \frac{1}{2}^-$, belongs to another Regge trajectories
 - Search for $\Lambda_c(3005)$
- $\Lambda_c(2940)$ has D*N contribution is similar to (1405), $D_s(2317)$, X(3872),
 - $\Lambda_{c}\left(\frac{1}{2}, 2P\right)$ has reversed mass which is larger than $\Lambda_{c}\left(\frac{3}{2}, 2P\right)$

arXiv: 2206.08822

23

Reconstruct Λ_c^+ via pK⁻ π^+ , pK_s, and $\Lambda\pi^+$

Significant signal of $\overline{B}^0 \rightarrow \Sigma_c(2455)\pi \overline{p}$

Measured branching fraction consistent with previous study at improved precision

<i>B</i> decay mode	yield	Br(10 ⁻⁴)	PDG (10^{-4})
$\Sigma_c(2455)^0\pi\overline{p}$	767 <u>+</u> 44	$1.09 \pm 0.06 \pm 0.07$	1.08 ± 0.16
$\Sigma_c(2455)^{++}\pi\overline{p}$	1213 ± 73	$1.84 \pm 0.11 \pm 0.12$	1.88 ± 0.24

arXiv: 2206.08822

24

Search for excited Λ_c states

• A resonant structure in $\Sigma_c(2455)\pi$ invariant mass spectra, the mass and width are measured to be:

 $m = (2913.8 \pm 5.6 + 3.7) \text{ MeV/c}^2, \Gamma = (51.8 \pm 20.0 \pm 18.8) \text{ MeV}$

- The significance in the most conservative case is 4.2σ
- The J^p prefers to be $\frac{1}{2}^{-}$, $\Lambda_c\left(\frac{1}{2}^{-}, 2P\right)$, thus name it $\Lambda_c(2910)$
- Need further efforts from both experimental and theoretical sides to understand $\Lambda_c(2910)$ and $\Lambda_c(2940)$

Summary

- Although Belle has stopped data taking for >10 years ago, we are still producing exciting results.
- The Belle II experiment at SuperKEKB aims to find New Physics beyond the SM with ultimate precision measurement (a few %, typically) of heavy flavor decays.
- Belle II started data taking on 25 March 2019 with its full detector and is performing as expected and obtained early physics results.
- Belle II can achieve lots of important results on baryons and charmed baryons near future.

Thanks!

Measurements of $\Omega_c^0 \to \Omega^- l^+ \nu$ and $\Xi_c^0 \to \Xi^- l^+ \nu$

PRL 127, 121803 (2021)

 \mathcal{A}_{cp} of $\mathcal{Z}_{c}^{0} \rightarrow \mathcal{Z}^{-} \pi^{+}$: search for CP violation in charmed baryons section

$$\frac{dN}{d\cos\theta_{\Xi}} \propto 1 + \alpha_{\Xi^{-}\pi^{+}}\alpha_{\Xi^{-}}\cos\theta_{\Xi}$$

 θ_{Ξ} : angle between the \vec{p}_{Λ} and $-\vec{p}_{\Xi_c^0}$ in the Ξ^- rest frame

$$\mathcal{A}_{CP} = (lpha_{\Xi^-\pi^+} + lpha_{{ar \Xi}^+\pi^-})/(lpha_{\Xi^-\pi^+} - lpha_{{ar \Xi}^+\pi^-})$$

