Study of charmonia at Belle

BELLE

Sourav Patra

(Belle Collaboration) IISER Mohali, India

15th - 19th August PhiPsi 2022 $\Phi_{\Psi} \underset{_{2022}}{\mathsf{PHIPSI}}$

Search for X(3872) $\rightarrow \pi^+\pi^-\pi^0$ at Belle [*submitted to PRD, arXiv:2206.08592*]

Measurement of two-photon decay width of $\chi_{c2}(1P)$ in $\gamma \gamma \rightarrow \chi_{c2}(1P) \rightarrow J/\psi \gamma$ at Belle [submitted to JHEP, arXiv:2208.04477]

Search for tetraquark states $X_{cc\bar{s}\bar{s}}$ in $D_{s}^{+}D_{s}^{+}$ ($D_{s}^{*}D_{s}^{+}$) final states at Belle

[PRD 105, 032002 (2022)]

Belle Experiment

Search for X(3872) $\rightarrow \pi^+\pi^-\pi^0$ at Belle

Overview of X(3872) $\rightarrow \pi^+\pi^-\pi^0$ decay

X(3872)

- X(3872) was discovered by the Belle Collaboration in 2003.
- Recently, quantum number of X(3872) is defined as J^{PC} = 1⁺⁺ by the LHCb collaboration. Phys.Rev.Lett. 110 (2013) 222001

The search for X(3872) with no charmed particle in the final state has remained in great interest.

Considering X(3872) as a pure charmonium state, X(3872) → gluon+gluon → light hadrons decays has significant branching fraction.

Considering the molecule picture into account, dominant contribution from:

$$X(3872) \to (D^*\bar{D} + \bar{D}^*D) \to \pi^0 D\bar{D} \to \pi^0 \pi^+ \pi^-$$

 $\mathcal{B}(X(3872) \to \pi^+\pi^-\pi^0) \sim 10^{-4} - 10^{-3}$

Strategy: X(3872) $\rightarrow \pi^+\pi^-\pi^0$

Decay channel:

 $\Upsilon(4S) \to B^0 \bar{B}^0 / B^+ B^- \qquad B \to X(3872) K \qquad X(3872) \to \pi^+ \pi^- \pi^0$

Data set: (772 \pm 11) million Υ (4S) sample

- Boosted Decision Tree (BDT) has been used to suppress large continuum background.
- Peaking background arises from $B \rightarrow D\rho$ and $B \rightarrow K^*\rho$ decays.
- Signal is extracted from a 2D simultaneous fit to $M(\pi^+\pi^-\pi^0)$ and M_{bc} .
- Calibration mode: $B \rightarrow J/\psi K$, $J/\psi \rightarrow \pi^+\pi^-\pi^0$ decay.

Studies of two cases

- Case I (3π phase space): Pions are distributed over phase space uniformly.
- Case II ($\pi^+\pi^-$ peaking): $\pi^+\pi^-$ mass is constrained to peak near D⁰D⁰ threshold.

Result: X(3872) $\rightarrow \pi^+\pi^-\pi^0$ [Case I (3π phase space)]

Phys.Rev.Lett. 124, 152001 (2020)

Result: X(3872) $\rightarrow \pi^+\pi^-\pi^0$ [Case II ($\pi^+\pi^-$ peaking)]

Phys.Rev.Lett. 124, 152001 (2020)

Measurement of two-photon decay width of $\chi_{c2}(1P)$ in $\gamma\gamma \rightarrow \chi_{c2}(1P) \rightarrow J/\psi\gamma$ at Belle

Overview of $\Gamma_{\gamma\gamma}(\chi_{c2}(1P))$ measurement

- P-wave charmonium states are at the intersection between perturbative and nonperturbative QCD.
- Theoretical prediction of two-photon decay width of $\chi_{c2}(1P)$, $\Gamma_{\gamma\gamma}(\chi_{c2}(1P))$, has a wide range: 280 eV to 930 eV. Phys. Rev. D 79, 094016 (2009) Rev. D 82, 034021 (2010)
- $\Gamma_{\gamma\gamma}(\chi_{c2}(1P))$ can be measured using $\gamma\gamma \rightarrow \chi_{c2}(1P)$ and $\chi_{c2}(1P) \rightarrow \gamma\gamma$ decays.
- $\Gamma_{\gamma\gamma}(\chi_{c2}(1P))$ can be calculated from the following relation.

$$\Gamma_{\gamma\gamma}(\chi_{c2}(1P)) = \frac{N_{\text{sig}}m_{\chi_{c2}(1P)}^2}{4\pi^2(2J+1)(\int \mathcal{L}dt)\mathcal{B}[\chi_{c2}(1P) \to J/\psi\gamma]\mathcal{B}[J/\psi \to \ell\ell]\epsilon L_{\gamma\gamma}(\chi_{c2}(1P))}$$

Study of charmonia at Belle 7

Strategy : $\Gamma_{\gamma\gamma}(\chi_{c2}(1P))$ measurement

Decay channel:

 $\gamma \gamma \to \chi_{c2}(1P) \qquad \chi_{c2}(1P) \to \gamma J/\psi \qquad J/\psi \to \mu^+ \mu^-/e^+ e^-$

- **Data set:** 971 fb⁻¹ data collected at $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$, $\Upsilon(4S)$, and $\Upsilon(5S)$.
- We use recoil mass of two leptons to reject the ISR photons.

$$M_{\rm rec}^2 = (E_{\rm beam}^* - E_{+-}^*)^2 - |p_{+-}^*|^2$$

• Signal is extracted from a binned maximum likelihood to ΔM .

$$\Delta M = M_{\ell^+\ell^-\gamma} - M_{\ell^+\ell^-}$$

Signal extraction : $\Gamma_{\gamma\gamma}(\chi_{c2}(1P))$ measurement

 $N_{sig}(\chi_{c2}(1P)) = 4960.3 \pm 97.9$

Reasult : $\Gamma_{\gamma\gamma}(\chi_{c2}(1P))$ measurement

Experiment	$\Gamma_{\gamma\gamma}(\chi_{c2}(1P)) \text{ (eV)}$
This measurement	$653 \pm 13 \pm 31 \pm 17$
Previous Belle	$596\pm58\pm48\pm16$
CLEO III	$582 \pm 59 \pm 50 \pm 15$
CLEO-c	$555 \pm 58 \pm 32 \pm 28$
BES III	$586 \pm 16 \pm 13 \pm 29$

This measurement is the most precise measurement.

Search for tetraquark states $X_{cc\bar{s}\bar{s}}$ in $D_{s}^{+}D_{s}^{+}(D_{s}^{*}D_{s}^{*})$ final states at Belle

Overview of $X_{cc\bar{s}\bar{s}}$ searches in $D_{s}^{+}D_{s}^{+}$ ($D_{s}^{*}D_{s}^{*}$)

- Quark model was proposed by Gell-Mann and Zweig in 1964 to understand the nature of hadrons available at that time.
- Secently, the LHCb experiment announced the observation of an open-double-charm state T^+_{cc} in $D^0 D^0 \pi^+$ mass spectrum.
- Double-heavy tetraquark states (with two heavy quarks and two light quarks) are studied in many scenarios: QCD sum rules, quark models, lattice QCD.
- A QCD inspired chiral quark model gives prediction for $X_{cc\bar{s}\bar{s}}$ with +2 electron charge and $J^P = 0^+, 2^+$. Phys. Rev. D 102, 054023 (2020)

Overview of $X_{cc\bar{s}\bar{s}}$ searches in $D_{s}^{+}D_{s}^{+}$ ($D_{s}^{*}D_{s}^{*}$)

- Quark model was proposed by Gell-Mann and Zweig in 1964 to understand the nature of hadrons available at that time.
- Secently, the LHCb experiment announced the observation of an open-double-charm state T^+_{cc} in $D^0 D^0 \pi^+$ mass spectrum.
- Double-heavy tetraquark states (with two heavy quarks and two light quarks) are studied in many scenarios: QCD sum rules, quark models, lattice QCD.
- A QCD inspired chiral quark model gives prediction for $X_{cc\bar{s}\bar{s}}$ with +2 electron charge and $J^P = 0^+, 2^+$. Phys. Rev. D 102, 054023 (2020)

Strategy: $X_{cc} \rightarrow D_{c}^{+} D_{c}^{+} (D_{c}^{*} D_{c}^{*})$

Decay channel:

$$e^+e^- \to X_{cc\bar{s}\bar{s}} + \text{anything} \qquad X_{cc\bar{s}\bar{s}} \to D_s^+ D_s^+ \ (D_s^{*+} D_s^{*+})$$

 $D_s^{*+} \to D_s^+ \gamma \qquad D_s^+ \to \phi(\to K^+ K^-) \pi^+, \ \bar{K}^* (892)^0 (\to K^- \pi^+) K^+$

- Data set: 6 fb⁻¹ $\Upsilon(1S)$, 25 fb⁻¹ $\Upsilon(2S)$, 711 fb⁻¹ $\Upsilon(4S)$, 121 fb⁻¹ $\Upsilon(5S)$, and 89 fb⁻¹ at e⁺e⁻ collision at 10.52 GeV.
- For $D_s^+D_s^+$ ($D_s^{*+}D_s^{*+}$) channel, we choose the $X_{cc\bar{s}\bar{s}}$ mass window from 4882 to 4992 (4801 to 4841) MeV/c² in step of 5 MeV/c².

Signa extraction : $X_{cc\bar{s}\bar{s}} \rightarrow D_{s}^{+} D_{s}^{+}$ decay

No significant signal is found

Signa extraction : $X_{cc\bar{s}\bar{s}} \rightarrow D_{S}^{*} + D_{S}^{*} + decay$

No significant signal is found

Result : $X_{cc\bar{s}\bar{s}} \rightarrow D_{s}^{+} D_{s}^{+}$ decay

We provide the upper limits at 90% CL

Result : $X_{cc\bar{s}\bar{s}} \rightarrow D_{s}^{*} D_{s}^{*} decay$

We provide the upper limits at 90% CL

- We report the first search for $X(3872) \rightarrow \pi^+\pi^-\pi^0$. In absence of significant signal, we estimate the UL at 90% CL. For case I and case II, the ULs are estimated to be 1.3×10^{-2} and 1.2×10^{-3} , respectively.
- We measure the two-photon decay width for $\chi_{c2}(1P)$ in $\gamma \gamma \rightarrow \chi_{c2}(1P) \rightarrow J/\psi \gamma$ decays. This measurement is crucial for better understanding of QCD models. We report the most precise measurement: $\Gamma_{\gamma\gamma} = 653 \pm 13 \pm 31 \pm 17$ eV.
- We search for double-charm tetraquark states $X_{cc\bar{s}\bar{s}}$ in $D_s^+D_s^+$ ($D_s^*+D_s^{*+}$) decays. In absence of significant signal, we estimate the UL at 90% CL. Estimated ULs for BR[$\Upsilon(1S,2S) \rightarrow X_{cc\bar{s}\bar{s}}$]xBR[$X_{cc\bar{s}\bar{s}} \rightarrow D_s^+D_s^+$ ($D_s^*+D_s^{*+}$)] are in the order of 10⁻⁴.

Thanks for your attention