

Hadron studies using two-photon processes from Belle

The 13th International Workshop e + e - Collisions From Phi to Psi 2022

Shanghai, China

August 15-19

Wenjing Zhu (zhuwj@ihep.ac.cn) Fudan University

on behalf of the Belle Collaboration

Outlines

- Two-photon interactions
- Charmonium(-like) states
- Accelerator and detector
- Review of two-photon results
- New results of two-photon at Belle
- Summary

Two-photon interactions

Nuclear Physics B 523 (1998) 423-438

Meson-photon transition form factors and resonance cross-sections in e^+e^- collisions

G.A. Schuler^{a,1}, F.A. Berends^{a,b}, R. van Gulik^b ^a Theory Division, CERN, CH-1211 Geneva 23, Switzerland ^b Instituut-Lorentz, University of Leiden, Leiden, The Netherlands

Received 3 November 1997; revised 15 January 1998; accepted 29 January 1998

- Meson-photon-photon transition form factors for S-, P-, and Dwave states are calculated.
- > Q^2 dependence of the (single) form factor governs the production of mesons.
- $\succ e^+e^-$ cross section for 1^+ states do not vanish at low Q^2

Charmonium(-like) states

-4-

GeV/*c*². [Phys. Rev. D 72, 054026 (2005)]

Accelerator and detector

Review of two-photon results

 $\blacklozenge \gamma \gamma \to Z(3930) \to D\overline{D}$

 $\Rightarrow \gamma \gamma \rightarrow X(3915) \rightarrow \omega I/\psi$

 $\Rightarrow \gamma \gamma \rightarrow X(4350) \rightarrow \phi I/\psi$

$\gamma\gamma \rightarrow Z(3930) \rightarrow D\overline{D}$

- □ The first radially excited χ_{cJ} states are predicted to have masses between 3.9 and 4.0 GeV/ c^2 , which is considerably above $D\overline{D}$ threshold.
- The results on mass, decay angular distributions and $\Gamma_{\gamma\gamma}(\mathcal{B} \to D\overline{D})$ are all consistent with expectations for the χ'_{c2} .
- Results for the mass, width, and the product of the two-photon decay width times the branching fraction to *DD*:

$$\begin{array}{l} \mathsf{M: 3923 \pm 5 \pm 2 \ MeV/c^2} \\ \Gamma_{tot} : 29 \pm 10 \pm 2 \ \mathrm{MeV} \\ \Gamma_{\gamma\gamma}(\mathcal{B} \rightarrow D\overline{D}) = 0.18 \pm 0.05 \pm 0.03 \ \mathrm{keV} \end{array}$$

Probably the χ_{c2} : Z(3930)

$\gamma\gamma \rightarrow X(3915) \rightarrow \omega J/\psi$

4.1 4.15

BaBar: PRD86,072002(2012)

4.2

candidate.

Three of the new states were discovered by Belle in the 3.90-3.95 GeV/ c^2 .

They appear in different production and decay processes, and are usually considered to be distinct particles, however there is no decisive evidence.

- These values are consistent with those of the Y(3940), and close to those of the Z(3930).
- Helicity-0 component is allowed, a $J^{PC}=2^{++}$ assignment is possible.

$\gamma\gamma \rightarrow X(4350) \rightarrow \phi J/\psi$

$$I^{G}(J^{PC}) = 0^{+}(?^{?+})$$

OMITTED FROM SUMMARY TABLE Seen by SHEN 10 in the $\gamma\gamma \rightarrow J/\psi\phi$. Needs confirmation.

 $m(X(4350)) = [4350.6^{+4.6}_{-5.1}(stat) \pm 0.7(syst)] \text{ MeV}/c^2$ $\Gamma(X(4350)) = [13^{+18}_{-9}(stat) \pm 4(syst)] \text{ MeV}$

The first investigation of the $\gamma \gamma \rightarrow \phi J/\psi$ is to search for high mass states with $J^{PC} = 0^{++}$ or 2^{++} , such as the tetraquark states and molecular states that are predicted by various models.

- The mass of this structure is consistent with the predicted values of a $c\bar{c}s\bar{s}$ tetraquark state with $J^{PC} = 2^{++}$, and a $D_s^{*+}D_{s0}^{*-}$ molecular state.
- The possibility that X(4350) could be an excited *P*-wave charmonium state(χ''_{c2}).

New results of two-photons at Belle

•
$$\gamma \gamma \rightarrow \chi_{c2}(1P) \rightarrow J/\psi \gamma$$

- $\gamma \gamma \rightarrow Z(3922)/X(4015) \rightarrow \gamma \psi(2S)$
- $\gamma \gamma \rightarrow X(3872) \rightarrow \pi^+ \pi^- J/\psi$

$\gamma\gamma \rightarrow \chi_{c2}(1P) \rightarrow J/\psi\gamma$

- The two-photon decay widths $(\Gamma_{\gamma\gamma})$ of mesonic states provide important information for testing models based on quantum chromodynamics(QCD).
- The predictions of two-photon decay width of χ_{c2}(1P) have the wide range of values between 280 eV and 930 eV in various theoretical calculations.[Phys. Rev. D 82, 034021 (2010)]
- Several experiments have reported the measurement of $\Gamma_{\gamma\gamma}(\chi_{c2}(1P))$. The precision of the experimental value of $\Gamma_{\gamma\gamma}(\chi_{c2}(1P))$ using the two-photon process is much less than the value measured in the two-photon decay. Precise measurements will help to improve the understanding of quarkonium states.

$\gamma\gamma \rightarrow \chi_{c2}(1P) \rightarrow J/\psi\gamma$

Selection criteria:

- ➤ Tracks: Ntrk=2, $|dz| \le 3cm$, $|dr| \le 1cm$, $-0.47 \le \cos\theta \le 0.82$, $p_T \ge 0.4$ GeV/c, $|\triangle dz| \le 1cm$, $\cos\alpha > -0.997$
- → Identify e/μ : $E/p \ge 0.8$ for electron, $E/p \le 0.4$ for muon
- ▷ For photon: $E_{\gamma} \ge 0.2$ GeV, the cluster is isolated from the nearest charged track by an angle greater than 18.2°.

Signal region: 3.06 GeV/ $c^2 < M_{+-} < 3.13$ GeV/ c^2

Sideband regions:

2.65 GeV/ $c^2 < M_{+-} < 3.00$ GeV/ c^2 3.15 GeV/ $c^2 < M_{+-} < 3.50$ GeV/ c^2

$\gamma\gamma \rightarrow \chi_{c2}(1P) \rightarrow J/\psi\gamma$

Background research:

 $\square M_{rec}^2(\gamma J/\psi) > 5.0 \text{ MeV}^2/c^4$ to reject ISR process

- $\square |p_T^{*tot}| < 0.15 \text{ GeV/c}, |p_T^{*+} + p_T^{*-}| > 0.1 \text{GeV/c to reject two-photon}$ production with a fake photon
- $\square p_z^{*tot} < -4.5$ GeV/c to reject the ISR $\psi(2S)$ production

$\gamma \gamma \rightarrow \chi_{c2}(1P) \rightarrow J/\psi \gamma$

- Non- J/ψ background is the dominant background
- Spin-1 meson production is suppressed

 $\Delta M = M_{+-\gamma} - M_{+-}$

Fitting functions: $A(\Delta M - a)^{-b}/(1 + e^{-c(\Delta M - d)})$ for background Double-side Crystal Ball function for $\chi_{c0}(1P)$ and $\chi_{c2}(1P)$

other experimental results. The result in this paper achieves the most precise measurement of $\Gamma_{\gamma\gamma}(\chi_{c2}(1P))$.

Both $\chi_{c0}(2P)$ and $\chi_{c2}(2P)$ can be produced in two-photon collision and decay to $\gamma\psi(2S)$ via E1 transition. [Phys. Rev. D 72, 054026 (2005)]

The partial widths are expected to be $\Gamma(\chi_{c0}(2P) \rightarrow \gamma \psi(2S)) \approx 135$ keV and $\Gamma(\chi_{c2}(2P) \rightarrow \gamma \psi(2S)) \approx 207$ keV according to Godfrey-Isgur relativized potential model. [Phys. Rev. D 72, 054026 (2005)]

• $\psi(2S)$ reconstructed from $J/\psi\pi^+\pi^-$, and J/ψ reconstructed from e^+e^- or $\mu^+\mu^-$.

Phys. Rev. D 105, 112011(2022)

- ➤ We apply $M^2_{rec}(\gamma\psi(2S)) > 10(\text{GeV}/c^2)^2$ to remove most ISR events.
- The transverse momenta of $\psi(2S)$ and $\gamma\psi(2S)$ are used to suppress the ISR background further.

We apply P^{*}_t(ψ(2S)) > 0.1GeV/c and P^{*}_t(γψ(2S)) < 0.2GeV/c to suppress the ISR background with selection efficiencies of (97.1±0.3)% and (67.8±0.7)%, respectively.</p>

Fitting to the $M(\gamma \psi(2S))$ distribution: $f_{PDF} = f_{R_1} + f_{R_2} + f_{ISR} + f_{bkg} + f_{SB}$

Resonant parameters	J = 0	J=2
M_{R_1}	$3922.4 \pm 6.5 \pm 2.0$	
Γ_{R_1}	$22\pm17\pm4$	
$\Gamma_{\gamma\gamma}\mathcal{B}(R_1 \to \gamma\psi(2S))$	$9.8\pm3.6\pm1.2$	$2.0 \pm 0.7 \pm 0.2$
M_{R_2}	$4014.3\pm$	4.0 ± 1.5
Γ_{R_2}	$4\pm11\pm6$	
$\Gamma_{\gamma\gamma}\mathcal{B}(R_2 \to \gamma\psi(2S))$	$6.2\pm2.2\pm0.8$	$1.2\pm0.4\pm0.2$

• Two excesses around 3.92 and 4.02 GeV/ c^2

Fit function: $f_{sum} = f_{R1} + f_{R2} + f_{ISR} + f_{bkg} + f_{SB}$

 f_{R1} , f_{R2} : Breit-Wigner \otimes Crystal Ball (solid red line) f_{ISR} : for ISR events (green blank histogram)

 f_{bkg} : possible addition backgrounds (pink dashed line) f_{SB} : the background in $\psi(2S)$ reconstruction (blue shaded histogram)

- R_1 near 3.92 GeV/ c^2 : 3.1 σ including systematic uncertainties
- R_2 near 4.01 GeV/ c^2 : study on look-elsewhere effect show a global significance of 2.8 σ .

- ◆ R_1 may be X(3915), χ_{c2} (3930), or mix of them. Assuming R_1 is the χ_{c2} (3930), a rough estimation shows Γ(χ_{c2} (3930) → $\gamma\psi(2S)$) = 200~300keV. [207 keV calculated by GI model in PRD 72, 054026 (2005)]
- ♦ R₂ has the same mass and width with 2⁺⁺ partner of X(3872) predicted in PRD 88, 054007 (2013), Eur. Phys. J. C 75, 547 (2015).
 R₂ corresponds to one new resonance X(4014).

- The hints implies that one state with a mass close to the D*D* threshold and a narrow width exists.[arXiv:2207.03930]
- The newly reported X(4014) state still needs to be studied, and its favored quantum numbers also need to be discussed.

$\gamma \gamma \rightarrow X(3872) \rightarrow \pi^+ \pi^- J/\psi$

• The charmonium-like state X(3872) has been observed in various interaction, but not searched for in two-photon interactions

• Mesons with $J^{PC} = 1^{++}$ can be produced if one or both photons are highly virtual — denoted as γ^*

• The value of two-photon decay width, obtained from this measurement, is sensitive to the internal structure of the X(3872).

$\gamma\gamma \rightarrow X(3872) \rightarrow \pi^+\pi^- J/\psi$

Phys.Rev.Lett.126.122001(2021)

■ With future advances in calculations of $\tilde{\Gamma}_{\gamma\gamma}$ for non- $c\bar{c}$ states and higher luminosities accumulated by Belle II, this method will clarify the understanding of the X(3872).

• Assuming the Q^2 dependence of a $c\bar{c}$ meson model

□ With 0.032 < $\mathcal{B}(X(3872) \rightarrow \pi^+\pi^-J/\psi)$ < 0.061 at 90% C.L., $\tilde{\Gamma}_{\gamma\gamma} = 20 - 500$ eV, these are consistent with the $c\bar{c}$ model prediction. [NPB 523, 423 (1998), PRD 83, 114015 (2011)]

Summary

- The two-photon decay width of $\chi_{c2}(1P)$ is determined to be $\Gamma_{\gamma\gamma}(\chi_{c2}(1P)) = 653 \pm 13(stat.) \pm 31(syst.) \pm 17(B.R.)$ eV. The result in BN1501 achieves the precise measurement of $\Gamma_{\gamma\gamma}(\chi_{c2}(1P))$ as of now.
- ◆ The evidence for the R_1 near 3.92 GeV/ c^2 may be X(3915), $\chi_{c2}(3930)$ or an admixture of them. A rough estimation shows the partial width $\Gamma(\chi_{c2}(3930) \rightarrow \gamma \psi(2S))$ = 200~300 keV, which is close to the predicted value of 207 keV from GI model. The mass of R_2 agrees with the HQSS-predicted mass (≈ 4013MeV/ c^2) of the 2⁺⁺ partner of X(3872).
- The first evidence for X(3872) production was found in two-photon $\gamma^*\gamma$ interactions. Three X(3872) candidates are observed with a significance of 3.2σ , $\Gamma_{\gamma\gamma}\mathcal{B}(X(3872) \rightarrow J/\psi\pi^+\pi^-)=5.5^{+4.1}_{-3.8}(stat) \pm 0.7(syst)$ eV, assuming the Q^2 dependence of a $c\bar{c}$ meson model.

