

The cross section measurements of electron positron annihilation into hidden charm

Yong Xie (on behalf of the BESIII collaboration)

PhiPsi2022, Shanghai

The BEPCII and BESIII

• Luminosity: $1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ at 3.773 GeV

BESIII data sample

This talk will focus on the 23 fb⁻¹ scan data sample at 3.8 – 5 GeV for the study of the vector charmonium(like)-states, which can be directly produced by e⁺e⁻ annihilation.

The Y-states

- ✓ Conventional charmonium states above threshold ($\psi(3770)$...)
 - Agree with the expectation of the quark potential model: mainly decay into open-charm mesons $(D^{(*)}\overline{D}^{(*)})$
- ✓ Charmonium-like Y-states (Y(4260)...)

• disagree with the simple ccbar scenario: widely decay into hidden-charm mesons (ccbar: like J/ψ , $\psi(2S)$...) 4

The Y-states

- Many resonance structures in hidden-charm processes, identified as vector Y-states
- ✓ Since they disagree with quark model, then what are these Y-states?
 - Hadronic molecules?
 - Baryonia?
 - Tetraquark states? ...

More studies are still needed!

Recent BESIII measurements on $e^+e^- \rightarrow$ hidden charm

 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

✓ The Y(4260) was firstly seen by BaBar, comfirmed by Belle

✓ Later split into two states Y(4220) and Y(4320) by BESIII

 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

- Much higher statistics
- Better MC simulation
- Enhanced tracking efficiency

 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

- ✓ Fit model (sum of resonances): $\sigma_{\rm fit}(\sqrt{s}) = |R_{\psi(3770)}(\sqrt{s})|^2 + \left|\sum_{i=0}^n R_i(\sqrt{s})e^{j\phi_i}\right|^2$
- ✓ Structure around 4 GeV better fit by a BW (than exp)
- ✓ The Y(4220) and Y(4320) are observed with > $10\sigma!$

$$M[Y(4220)] = 4221.4 \pm 1.5 \pm 2.0 \text{ MeV}/c^2$$

$$\Gamma[Y(4220)] = 41.8 \pm 2.9 \pm 2.7 \text{ MeV}$$

$$M[Y(4320)] = 4298 \pm 12 \pm 26 \text{ MeV}/c^2$$

$$\Gamma[Y(4320)] = 127 \pm 17 \pm 10 \text{ MeV}$$

 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

10

 $e^+e^- \rightarrow K^+K^-J/\psi$

- Much higher statistics
- Partial-reconstruction method

	Parameters	Solution I	Solution II
	$M({ m MeV})$	$4225.3 \pm 2.3 \pm 21.5$	
Y(4230)	$\Gamma_{tot}({ m MeV})$	$72.9 \pm 6.1 \pm 30.8$	
	$\Gamma_{ee} {\cal B}({ m eV})$	$0.42 \pm 0.04 \pm 0.15$	$0.29\pm0.02\pm0.10$
Y(4500)	$M({ m MeV})$	$4484.7 \pm 13.3 \pm 24.1$	
	$\Gamma_{tot}({ m MeV})$	$111.1 \pm \ 30.1 \ \pm \ 15.2$	
	$\Gamma_{ee} \mathcal{B}(\mathrm{eV})$	$1.35\pm0.14\pm0.06$	$0.41\pm0.08\pm0.13$
phase angle	$arphi(\mathrm{rad})$	$1.72 \pm 0.09 \pm 0.52$	$5.49 \pm 0.35 \pm 0.58$

B€SIII

 $e^+e^- \rightarrow K^+K^-J/\psi$

First observation of Y(4500) with > $8\sigma!$ Also an evidence in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

 $\checkmark\,$ Consistent with some theoretical predictions:

- 5S-4D mixing scheme [PRD 99,114003 (2019)]
- heavy-antiheavy hadronic molecules model [ProgrPhys 41,65(2021)]
- Lattice QCD result for a (cscs) state [PRD 73,094510 (2006)]

	Parameters	Solution I	Solution II
	$M({ m MeV})$	$4225.3 \pm 2.3 \pm 21.5$	
Y(4230)	$\Gamma_{tot}({ m MeV})$	$72.9 \pm 6.1 \pm 30.8$	
	$\Gamma_{ee}\mathcal{B}(\mathrm{eV})$	$0.42\pm0.04\pm0.15$	$0.29\pm0.02\pm0.10$
	$M({ m MeV})$	$4484.7 \pm 13.3 \pm 24.1$	
Y(4500)	$\Gamma_{tot}({ m MeV})$	$111.1 \pm \ 30.1 \ \pm \ 15.2$	
	$\Gamma_{ee}\mathcal{B}(\mathrm{eV})$	$1.35\pm0.14\pm0.06$	$0.41\pm0.08\pm0.13$
phase angle	$arphi(\mathrm{rad})$	$1.72 \pm 0.09 \pm 0.52$	$5.49 \pm 0.35 \pm 0.58$

Improved precisions!

 \checkmark Observation of resonance structures with > 5 σ over continuum

- Both for the two-BW and the One-BW hypotheses
- ✓ First observation of *Y*-states \rightarrow *D*-wave charmonium!

Parameters in two-BW hypothesis:

Parameters	Solution I	Solution II	
$M[R_1]$	$4406.9 \pm 17.2 \pm 4.5$		
$\Gamma_{ m tot}[R_1]$	$128.1 \pm 37.2 \pm 2.3$		
$\Gamma_{\mathrm{e^+e^-}}\mathcal{B}_1^{R_1}\mathcal{B}_2$	$0.36 \pm 0.10 \pm 0.03$	$0.30 \pm 0.09 \pm 0.03$	
$M[R_2]$	$4647.9 \pm 8.6 \pm 0.8$		
$\Gamma_{ m tot}[R_2]$	$33.1 \pm 18.6 \pm 4.1$		
$\Gamma_{\mathrm{e^+e^-}}\mathcal{B}_1^{R_2}\mathcal{B}_2$	$0.24 \pm 0.07 \pm 0.02$	$0.06 \pm 0.03 \pm 0.01$	
ϕ	$267.1 \pm 16.2 \pm 3.2$	$-324.8 \pm 43.0 \pm 5.7$	

- $f_0(980)\psi(2S)$ hadron molecule (PLB 665, 26 (2018))
- $\Sigma_c^0 \overline{\Sigma}_c^0$ baryonium (J. Phys. G 35, 075008 (2008))
- excitation of Y(4260) (PRD 89, 114010 (2014))

✓ One-BW hypothesis:

• Large width, not observed before!

✓ $t = -2\ln \frac{\mathcal{L}_{1BW}}{\mathcal{L}_{2BW}}$ to discriminate between hypotheses:

- Data favor the two-BW hypothesis: t = 13.6
- Data disfavor the one-BW hypothesis by 1.7σ

Search for $X(3872) \rightarrow \pi^0 \chi_{c0}, \pi \pi \chi_{c0}$

✓ The *X*(3872) can be effectively produced in $e^+e^- \rightarrow \gamma X(3872)$ near 4.2 GeV.

Search for $X(3872) \rightarrow \pi^0 \chi_{c0}, \pi \pi \chi_{c0}$

 $\mathcal{B}(X(3872))$

 $\rightarrow \pi^+\pi^-$

BESI

Summary

- ✓ The BESIII did a lot of efforts for studying the *Y*-states through the $(e^+e^- \rightarrow \text{hidden charm})$ processes.
- ✓ Higher precisions (cross section, resonance parameters)
 ✓ New observations [the new Y(4500) state; the new decay Y-states → D-wave charmonium]
- ✓ Even better measurements can be achieved with the upcoming upgrades on the BEPCII and BESIII.

Summary

- ✓ The BESIII did a lot of efforts for studying the *Y*-states through the $(e^+e^- \rightarrow \text{hidden charm})$ processes.
- ✓ Higher precisions (cross section, resonance parameters)
 ✓ New observations [the new Y(4500) state; the new decay Y-states → D-wave charmonium]
- ✓ Even better measurements can be achieved with the upcoming upgrades on the BEPCII and BESIII.

Thank you!

