Triangle Singularities in the Production of X(3872) and $T^+_{cc}(3875)$

International Workshop on e+e- collisions from Phi to Psi

> Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics **University of Bonn**

collaborators: Eric Braaten, Kevin Ingles (Ohio State U.), Jun Jiang (Shandong U.)

Liping He

Fudan University, Shanghai, China, August 15-19, 2022

Outline

- Brief review of X(3872) and $T^+_{cc}(3875)$
- Charm-meson triangle singularity
- **Production of** *X*(3872)
 - X + π from B meson decay [PRD100, 074028(2019)]
 - + $X + \pi$ in prompt production at hadron colliders [PRD100, 094006(2019)]
 - + X + γ in e⁺e⁻ annihilation [PRD100, 031501(2019), PRD101, 014021(2020), PRD101, 096020(2020)]
- Production of $T_{cc}^+(3875) + \pi$ at hadron colliders [arXiv: 2202.03900]
- Summary

Brief review of $X(3872) [\equiv \chi_{c1}(3872)]$

✓ discovery at e⁺e⁻ collider [Belle (2003)]:

 $\ensuremath{ extsf{OF}}$ confirmation at $p\bar{p}$ collider [CDF (2003)]:

 $p\bar{p} \to X + anything$

• quantum numbers [LHCb (2013)]:

 $J^{PC} = 1^{++}$

• mass [LHCb (2020)]:

 $E_X = M_X - (M_{D^{*0}} + M_{D^0}) = (-0.07 \pm 0.12) \text{ MeV}$ $|E_X| < 0.22 \text{ MeV} \text{ at } 90\% \text{ CL}$

first measurement of width (Breit-Wigner)
[LHCb (2020) average]:

 $\Gamma_{\rm X} = (1.19 \pm 0.19) \, {\rm MeV}$

• 7 observed decay modes: $J/\psi \pi^+\pi^-$, $J/\psi \pi^+\pi^-\pi^0$, $J/\psi \gamma$, $\psi(2S)\gamma$, $D^0 \overline{D}^0 \pi^0$, $D^0 \overline{D}^0 \gamma$, $\chi_{c1}\pi^0$

numerous studies in the literature [more than 2000 citations for the Belle's discovery paper]

Brief review of $T^+(3875)$

discovery by LHCb [arXiv:2109.01038, arXiv:2109.01056]

many theoretical studies in the literature [more than 100 citations for the LHCb papers]

- quark contents: ccūd
- quantum numbers:

 $I(J^{P})=0(1^{+})$

mass (Breit-Wigner):

 $\epsilon_{T} = M_{T} - (M_{D^{*+}} + M_{D^{0}}) = (-273 \pm 63) \text{ keV}$

mass (pole energy) [D*+D⁰ threshold effect]: $\epsilon_{T} = M_{T} - (M_{D^{*+}} + M_{D^{0}}) = (-360 \pm 40) \text{ keV}$

width:

 $\Gamma_{\rm BW} = 410 \text{ keV}, \ \Gamma_{\rm pole} = 48 \text{ keV}$

decay modes: $D^+D^0\pi^0$, $D^0D^0\pi^+$, $D^+D^0\gamma$

See "An updated review of the new hadron states": Chen *at al.,* arXiv: 2204.02649

What is the X(3872)?

Brief review of X(3872) and $T_{cc}^+(3875)$

S-wave loosely bound charm-meson molecule!!

$$\bar{D} = \frac{1}{\sqrt{2}} \left(D^{*0} \bar{D}^0 + D^0 \bar{D}^{*0} \right)$$

S-wave loosely bound charm-meson molecule!!

dominant component

Brief review of X(3872) and $T_{cc}^+(3875)$

What is the X(3872)?

other components of wave functions have small probabilities at short distances:

at short distances

 $\bar{q}\bar{q}$ bound to heavy diquark (*cc*)

S-wave loosely bound charm-meson molecule!!

$$I = \frac{1}{\sqrt{2}} \left(D^{*0} \bar{D}^0 + D^0 \bar{D}^{*0} \right)$$

- + P wave charmonium $\chi_{c1}(2P)$?
- + charged charm mesons $D^{*+}D^- + D^+D^{*-}$?
- + compact tetraquark $[cq][\bar{c}\bar{q}]$?

S-wave loosely bound charm-meson molecule!!

dominant component

• $D^{*0}D^+$ component with small probability, isospin = 0 $\rightarrow (D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$ • other possible components of wave functions: compact tetraquark $cc\bar{q}\bar{q}$,

Brief review of X(3872) and $T_{cc}^{+}(3875)$

Universal properties determined by the binding energy

Galilean-invariant XFFT

Braaten [PRD 91, 114007(2015)] Braaten, He & Jiang [PRD 103, 036014(2021)]

Charm-meson triangle singularity

triangle singularity: three charm mesons can be on shell simultaneously

 $\frac{\log^2(E - E_{\Delta})}{E_{\Delta}}$ determined by masses

✓ square-root branch point at $E = E_+$

cusp at $E = E_+$

$$E_{+} = M_{D^{*+}} - M_{D^{0}} - m_{\pi^{0}} = 5.9 \text{ MeV}$$

Charm-meson triangle singularity

Production of $X(3872) + \pi$ from B meson decay

Production of $X(3872) + \pi$ **from B meson decay**

• Sakai, Oset & Guo [PRD 101, 054030(2020)] $B^- \rightarrow K^- D^{*0} \overline{D}^{*0} \rightarrow K^- X \pi^0$ Ex (= $-\delta x$) may be extracted from the asymmetry

of the $X\pi$ line shape

- Nakamura [PRD 102, 074004(2020)] $B^0 \rightarrow K^+ D^{*0}D^{*-} \rightarrow K^+ (J/\psi \rho)\pi^-$ TS could produce narrow peak in $J/\psi\rho$ invariant mass near 3872 MeV even without X resonance
- Yan, Ge & Liu [arXiv:2208.03943] $\mathbf{B}^{0} \rightarrow \pi^{-} \bar{D}^{0} D_{s1}(2536) \rightarrow \pi^{-} K^{+} X$

Lineshape from TS is sensitive to X mass if its width is relatively small (< 1 MeV)

Production of $X(3872) + \pi$ at hadron colliders

 $D^{*+}\bar{D}^{*0} \to X(3872)\pi^+$

Braaten, He & Ingles [PRD 100, 094006(2019)]

- * creation of $D^{*+}\overline{D}^{*0}$ at short distance
- * rescattering of virtual $D^{*+}\overline{D}^{*0}$ into $X\pi^+$

triangle singularity produces narrow peak in $X\pi^{\pm}$ invariant mass peak near 6.1 MeV above $X\pi^+$ threshold

a small fraction of events are from triangle singularity, but all within 1 MeV of the peak

Experimental observation of $X(3872) + \pi$ in $p\bar{p}$ collisions

D0 Collaboration [PRD 102, 072005 (2020)]		
prompt and b-hadron	decay production of	X(.
$T(X\pi) < 11.8 \text{ MeV}$	observed events	X
prompt production:	18 ± 16	
b-decay:	27 ± 12	

conclusions:

- * prompt production: no evidence for an enhancement as expected from the triangle singularity
- * b-decay: no "significant" evidence for an enhancement as expected from the triangle singularity

questions:

no peak in prompt production?? first hint of narrow peak from triangle singularity in b-decay??

)	
	-
_	
	10

Production of $X(3872) + \gamma$ in e^+e^- annihilation

 $e^+e^- \rightarrow D^*\bar{D}^*(P \ wave) \rightarrow X\gamma$

Production of $X(3872) + \gamma$ in e^+e^- annihilation

Production of $X(3872) + \gamma$ in e^+e^- annihilation

• Guo [PRL 112, 202002 (2019)]

- creation of D*0D*0(S-wave) at short distance
- rescattering of virtual **D**^{*0}**D**^{*0} into Xy

Line shape in X_{γ} :

- * peak a few MeV above D*0D*0 threshold
- * can be used to measure EX

Sakai, Jing & Guo [PRD 102, 114041(2020)]

 $e^+e^- \rightarrow Zc(4020) \pi^0$, $Zc(4020) \rightarrow D^{*0}(S-wave) \rightarrow X\gamma$

• **BESIII** [arXiv:2101.00644]: no significant signal $e^+e^- \rightarrow Zc(4020) \pi^0$, $Zc(4020) \rightarrow D^{*0}\overline{D}^{*0}(S-wave) \rightarrow X\gamma$

Schmid cancellation

peak in do/dE from interplay between the Triangle singularity and the square-root singularity

At large energy, $d\sigma/dE \propto E^{1/2} \iff$ unphysical behavior [an artifact of using the universal approximation for T_{cc}^+ beyond its range of applicability]

coupled-channel model (including $D^{*0}D^+$)

using model wave function

→ more physical qualitative behavior at large energy

relative probability for the $D^{*0}D^+$ channel: $Z_{0+} = \frac{(\Lambda + \gamma)\gamma}{(\Lambda + \gamma_{0+})\gamma_{0+}} < 1$

difference between $d\sigma/dE$ for $T_{cc}^+\pi^+$ and $T_{cc}^+\pi^$ near triangle-singularity peak

 $\sigma \left[T_{cc}^{+} \pi^{+} \right] - \sigma \left[T_{cc}^{+} \pi^{-} \right] \approx \left(1.3_{-0.8}^{+1.5} \right) \times 10^{-2} \sigma^{(\Lambda)} \left[T_{cc}^{+}, \operatorname{no} \pi \right]$

- independent of E_{max}
- dominated by the triangle-singularity peak
- $T_{cc}^+\pi^-$ can be used to measure background

subtraction of $T_{cc}^+\pi^-$ subtracts the background for $T_{cc}^+\pi^+$ but keeps the peak from the triangle singularity.

fraction of $T_{cc}^+\pi^+$ events with $T_{cc}^+\pi^+$ in the peak from triangle singularity: 1.2% a small fraction of events are from triangle singularity, but all within 1 MeV of the peak

LHCb observed 117 ± 16 events

more statistics to observe the triangle-singularity peak

Summary

given $J^P = 1^+$, $|E_X| < 0.22$ MeV, $\varepsilon_T = (-360 \pm 40)$ keV X(3872) and $T_{cc}^+(3875)$ must be loosely bound charm-meson molecules Content of the second stress of the second secon produce narrow peaks in $X\pi, X\gamma$ and $T_{cc}^+\pi$ invariant mass near D^*D^* threshold <u>smoking gun</u> for X and T_{cc}^+ as charm-meson molecules !! compact tetraquark would have suppressed coupling to charm mesons \checkmark production of $X + \gamma$: • $\sigma[e^+e^- \rightarrow X\gamma]$: narrow peak at 4016 MeV **Solution** of $X/T_{cc}^+ + \pi^+$: + do/dE: narrow peak near 6.1 MeV above X/T_{cc}^+ + π^+ threshold

+ A small fraction of events are from triangle singularity, but within 1 MeV of the peak

Backup

 $T_+(q^2,\gamma^2) = \left(1 + \frac{mb}{2M_Tc}\right) \frac{1}{\sqrt{c}} \log \frac{\sqrt{a} + \sqrt{c} + \sqrt{a+b+c}}{\sqrt{a} - \sqrt{c} + \sqrt{a+b+c}} + \frac{m}{M_Tc} \left(\sqrt{a} - \sqrt{a+b+c}\right)$ $F(W) = -i\frac{\mu\sqrt{\pi\gamma_X}}{4\pi M_0}q\left(\frac{b}{2c}\log\frac{\sqrt{a}+\sqrt{a+b+c}+\sqrt{c}}{\sqrt{a}+\sqrt{a+b+c}-\sqrt{c}}+\frac{\sqrt{a}-\sqrt{a+b+c}}{\sqrt{c}}\right)$

