Muon g - 2/EDM Experiment at J-PARC

Ce ZHANG

on behalf of the J-PARC E34 Collaboration School of Physics, Peking University

PHIPSI 2022

Muon g - 2/EDM Experiment at J-PARC

Introduction

- Muon g 2 and EDM
- Measurements and SM prediction

• Muon g - 2/EDM (E34) Experiment at J-PARC

- **Experimental Components**
- Statistical and Systematic Uncertainties
- Schedule
- Summary

Muon g - 2 and EDM

electromagnetic field is

$$H = -(\overrightarrow{\mu})^{\bullet}$$

Magnetic dipole moment

$$\overrightarrow{\mu} = g \frac{en}{2m} \overrightarrow{S}$$

- Dirac equation.
- But quantum fluctuations give the anomaly of muon a_{μ} :

$$a_{\mu}$$

• The Hamiltonian for the spin 1/2 particle (charge e and mass m) in the external

$$\overrightarrow{B} - (\overrightarrow{d}) \overrightarrow{E}$$

Electric dipole moment
$$\overrightarrow{d} = \eta \frac{e\hbar}{2m} \overrightarrow{S}$$

• $\vec{\mu}$ is proportional to the gyromagnetic ratio (g), which was predicted g = 2 by the

$$\equiv \frac{g_{\mu} - 2}{2}$$

 a_{μ} . The new experimental average $a_{\mu}(\exp)$ has a 4.2 σ deviation from $a_{\mu}(SM)$.

In April 2021, the Fermilab Muon g - 2 experiment released the latest measurement on

In April 2021, the Fermilab Muon g - 2 experiment released the latest measurement on a_{μ} . The new experimental average $a_{\mu}(\exp)$ has a 4.2 σ deviation from $a_{\mu}(SM)$.

- Another independent experiment for muon g - 2 & EDM was proposed in Japan

emittance ~1000π mm • mrad

emittance ~1000π mm · mrad

luon g-2	J-PARC Muon g-2/EDM		
	300 MeV/c		
	B = 3 T (Solenoidal)		
	7.4 ns		
	66 cm		
Irupole	E = 0, very weak magnetic		

Final goal Initial goal

Prog. Theor. Exp. Phys. 2019, 053C02

J-PARC Muon g - 2/EDM experiment (E34)

Cooling

• Low emittance thermal muon beam

Acceleration

Muon LINAC to 212 MeV

Injection

• 3D injection scheme

Storage

Compact storage ring with tracking detectors

Storage

Positron detector 22

J-PARC Japan Proton Accelerator Research Complex

J-PARC Japan Proton Accelerator Research Complex

Rapid Cycling Synchrotron (RCS) 3 GeV proton, ~ 1 MW, 25 Hz

LINAC, 400 MeV proton

J-PARC Muon *g* – 2/EDM experiment (E34)

Material and Life Science Facility (MLF)

Muon Source at J-PARC MLF

S-line

- surface μ^+
- dedicated to μ SR ullet
- S1 area is available •
- S2 is under construction •
- S3/S4 are planned •

3 GeV proton from RCS

 $2 \times 10^{15} / s @1MW$

Muon target (graphite, ^t20mm)

U-line

- ultra slow μ^+
- U1A for nm- μ SR
- U1B for μ microscopy •
- under commissioning •

H-line

- surface μ^{+} (>10⁸ μ^{+}/s), decay μ^+/μ^- , e⁻
- for high intensity & long **beamtime** experiments
- H1 for DeeMe & MuSEUM
- H2 for g-2/EDM & transmission muon microscopy
- under construction

D-line

- decay μ^+/μ^- , surface μ^+
- D1 area for μ SR
- D2 for variety of science •

H-line Construction

- Beam commissioning is ongoing at the H1 area.
- Construction of the H2 area is in progress.
- The extension building design is ready to start construction in 2023.

Extension building for muon LINAC, kicker and storage ring

H-line Construction

- Beam commissioning is ongoing at the H1 area.
- Construction of the H2 area is in progress.
- The extension building design is ready to start construction in 2023.

Thermal Muon Source

Surface muon cooling by laser ionization of muonium (Mu) to thermal muon

Thermal Muon Source

Surface muon cooling by laser ionization of muonium (Mu) to thermal muon

Thermal Muon Source Muonium (Mu) Laser Ionization Test

muonium from silica aerogel at the J-PARC MLF S2 area

The quick demonstration of thermal muon generation via laser ionization of

Thermal Muon Source Muonium (Mu) Laser Ionization Test

muonium from silica aerogel at the J-PARC MLF S2 area

The quick demonstration of thermal muon generation via laser ionization of

$$\Delta \nu_{1S2S} \simeq \frac{3\alpha^2}{8h} m_e c^2 (1 + \frac{m_e}{m_{\mu}})^{-1}$$

• With the 244 nm laser, It is also a direct measurement of Mu 1S-2S interval \rightarrow determination of muon mass (Similar to Mu-MASS at PSI)

• Final goal:

- Muon mass: 1 ppb
- ► (1S-2S: 10 kHz, 4 ppt)

Thermal Muon Source Muonium (Mu) Laser Ionization Test

muonium from silica aerogel at the J-PARC MLF S2 area

The quick demonstration of thermal muon generation via laser ionization of

Nuon Acceleration

The first muon-dedicated linac in the world

Frequency (2-stage) 1×10^{6} /s Intensity Rep rate 25 Hz Pulse width 10 ns Norm. rms emittance $1.5 \,\pi\,\text{mm}\,\text{mrad}$ 0.1 % Momentum spread

Muon LINAC parameters

Muon Acceleration

• First muon acceleration using RF linac! Phys. Rev. Accel. Beams 21, 050101 (2018)

Muons accelerated in Japan

Muons have been accelerated by a radio-frequency accelerator for the first time, in an experiment performed at the Japan Proton Accelerator Research Complex (J-PARC) in Tokai, Japan. The work paves the way for a compact muon linac that would enable precision measurements of the muon anomalous magnetic moment and the electric dipole moment.

Around 15 years ago, the E821 storage-ring experiment at Brookhaven National

VOLUME 58 NUMBER 6 JULY/AUGUST 2018

Nuon Acceleration

- Completed fabrication of the real IH-DTL
- Fabricating the 1st DAW tank & proto-DLS.

Stem with washer

Real IH-DTL

Muon LINAC parameters	
Frequency (2-stage)	324MHz, 129
Intensity	1×10^6 /s
Rep rate	25 Hz
Pulse width	10 ns
Norm. rms emittance	1.5 π mm m
Momentum spread	0.1 %

Disk1

Stem with disk

Real DAW in production

DLS1 DLS2 DLS3 DLS4 [%], D [mm], 2a [mm], 2b [mm] 100 90 80 160 70 140 -120 60 $\Delta W = \overline{E}D\cos\phi_{c}$ 50 100 $D = \beta \lambda / 3$ 40 30 20 10 θ 100 200 cell number (n) t = 5 mmb *, R* = 2.5 mm a D proto-DLS soon

3D Spiral Injection Why inject beam 3D spirally?

The 3D spiral injection scheme has been invented for small muon orbit

Conventional 2D injection @BNL and FNAL

- Inflector + horizontal kicker \bullet
- Efficiency ~3-5% \bullet

[PRD73, 072003, 2006]

Novel injection @J-PARC

- 3D spiral injection + vertical kicker
- Efficiency > 80%

[H. Iinuma et al., NIMA 832, 51, 2016]

3D Spiral Injection

- Prototypes of the kicker were fabricated, and the 3D injection scheme is validated using a low momentum pulsed electron beam at KEK
- Finalize kicker power supply specifications and purchase them in 2023

Spiral injection test equipment using electron beam

 visualization of 3D spiral geometry with a CCD camera

Storage Magnet

• 3T MRI-type superconducting solenoid magnet is under design

Storage Magnet Magnetic Field Measurement

- further tests will be carried out to **3 T.**
- obtained with 15 ppb uncertainties.

MRI magnet for MuSEUM experiment

Magnetic field after shimming

Demonstration of sub-ppm field (<0.2 ppm) shimming at 1.2 T using magnet from MUSEUM;

In the cross-calibration of FNAL and J-PARC field probes at ANL, ~7 ppb agreement was

Cross calibration at ANL in January 2019

Positron Tracking Detector

Software Development

- framework was developed (named "g2esoft").
- Track reconstruction algorithm operating in high track density is being implemented in this software framework.

Concept of g2esoft

To manage detector simulation and track reconstruction, a new software

Simulated positron hits and reconstructed tracks with 25 positrons

Statistics Estimation

- muon generation to reconstructed positron is 4.0×10⁻⁴.
- the BNL precision of **0.45 ppm** on a_{μ} .

Initially, a 3.2×10⁸µ/sec is expected at the entrance of the H2 area at 1 MW proton power.

The expected intensity of stored muon is $1.3 \times 10^5 \,\mu$ /sec. Cumulative efficiency from thermal

2-year data (2×10⁷ seconds, ~230 days) taking will give a total positron 5.7×10¹¹, achieving

	Estimation
tal number of muons in the storage magnet	5.2×10^{12}
tal number of reconstructed e^+ in the energy window [200, 275 MeV]	5.7×10^{11}
fective analyzing power	0.42
tistical uncertainty on ω_a [ppb]	450
certainties on a_{μ} [ppb]	450 (stat.)
	< 70 (syst.)
certainties on EDM [$10^{-21} e \cdot cm$]	1.5 (stat.)
	0.36 (syst.)

Systematic Uncertainties of a_{μ}

Systematic uncertainties will be much smaller than the statistical ones.

Anomalous spin precession (ω_a)		Magnetic field (ω_p)		
Source	Estimation (ppb)	Source	Estimation (ppb)	
Timing shift	< 36	Absolute calibration	25	
Pitch effect	13	Calibration of mapping probe	20	
Electric field	10	Position of mapping probe	45	
Delayed positrons	0.8	Field decay	< 10	
Diffential decay	1.5	Eddy current from kicker	0.1	
Quadratic sum	< 40	Quadratic sum	56	

 δa_{μ} (syst.) < 70 ppb

Table 6. Estimated systmatic uncertainties on a_{μ} .

- \rightarrow our experiment is still statistical limited

Schedule

- A part of the construction has been started.

JFY	2021	2022	2023	2024	2025	2026	2027	
H2 area		Shields	Magnets					
H-line experimental building				Building co	onstruction		sioning	aking
Muon Source, LINAC, injection, storage magnet, detector						Installation	Commis	Data t
Grant-in-Aids		Kakanhi "spec	cially promoted	research"				

• The R&D stage is over. Construction is ongoing aiming at data taking from 2027.

Towards the Ultimate Muon Anomaly Test

Slides by T. Mibe, inspired by K. Jungmann's slide

Collaboration Status

Date	Events
Dec. 2017	Responses and revised TDR were submitted to recommittee.
Mar. 2019	KEK-SAC endorsed the E34 for the near-term pr
May 2019	Summary paper of TDR was published (PTEP 20 053C02)
July 2020	Funded by KAKENHI "Specially Promoted Resea JSPS
Jun. 2021	KEK requested a funding to Japanese governme (MEXT), then MEXT requested to MOF.

Now the collaboration consists of 110 members from 9 countries and still growing

24th Collaboration Meeting in June 2022@Online/J-PARC

- - A thermal muon beam enables a high-quality muon beam.
 - Muon LINAC re-accelerates muon beam, which is 3D injected into the compact storage region.
- 0.45 ppm of a_{μ} measurement is expected with 2 years of data taking.

• J-PARC E34 experiment will measure muon g - 2/EDM in a different approach than BNL and FNAL.

The tracking detector reduces pile-up and measures the momentum direction of positrons in a highly uniform B-field.

• The development stage is over; the construction stage has started aiming at the first run in 2027.

EDM Measurement

No E-field simplifies the measurement for J-PARC.

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right] \qquad \vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$
FNAL E989
(at magic γ)
J-PARC E34
(E = 0 at any γ)

• EDM measurement relies on the tilt of muon precession to the mid plane.

EDM Measurement

EDM measurement relies on the tilt of muon precession to the mid plane

- Observed in up-down asymmetry
- $\omega_{\eta}/\omega_{a} ~(\eta \beta/2a_{\mu})$
- Good detector alignment precision is essential
- aim at 10⁻²¹ e cm sensitivity (10⁻⁵ rad)
- 1 µm detector alignment measurement is developed

EDM Measurement

- The muon EDM SM expectation is $\sim 2 \times 10^{-38}$ e cm
- The current experimental limit is 1.8×10^{-19} e cm by the BNL E821.

Experimental Determination of a_{μ}

1. Prepare a polarized muon beam

2. Store in a magnetic field (muon's spin precesses)

$$\omega_a = \omega_{\rm S} - \omega_{\rm C} = -\underbrace{\frac{1}{2}(g-2)}_{a_{\mu}} \frac{eB}{m}$$

3. Detect a decay positron

(Higher energy positron tends to emit along muon's spin direction).

luon g-2	J-PARC Muon g-2/EDM		
	300 MeV/c		
	B = 3 T (Solenoidal)		
	66 cm		
	7.4 ns		
Irupole	E = 0, very weak magnetic		

Precision Comparison

	BNL-E821	Fermilab-E989	Our Experiment
Muon momentum	$3.09~{ m GeV}/c$		$300 { m ~MeV}/c$
Lorentz γ	29.3		3
Polarization	100%		50%
Storage field	B = 1.43	5 T	B = 3.0 T
Focusing field	Electric qua	drupole	Very weak magnetic
Cyclotron period	149 ns		7.4 ns
Spin precession period	$4.37~\mu s$		$2.11 \ \mu s$
Number of detected e^+	$5.0 imes 10^9$ $1.6 imes 10^{11}$		$5.7 imes10^{11}$
Number of detected e^-	$3.6 imes 10^9$		
a_{μ} precision (stat.)	460 ppb	100 ppb	450 ppb (Phase-1
(syst.)	280 ppb	100 ppb	$<\!70 \text{ ppb}$
EDM precision (stat.)	$0.2 \times 10^{-19} \ e \cdot \mathrm{cm}$		$1.5 imes 10^{-21} \ e \cdot { m cm}$
(syst.)	$0.9 \times 10^{-19} \ e \cdot \mathrm{cm}$		$0.36 \times 10^{-21} \ e \cdot \mathrm{cm}$

J-PARC E34

H-line Surface Muon Optics

Simulated beam profile at H2 area entrance

- The beam-line consist of solenoids ("HS"), bending magnets ("HB"), DC separator ("HSEP"), quadruples ("HQ"), etc.
- Beam-line optics was tuned to deliver 1.6×10^8 surface μ /s at the muonium production target under a 1MW proton beam power.

