

Partial Wave Analysis of the Charmed Baryon Decay $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0$

Xinhai Xie on behalf of the BESIII Collaboration

Email: xiexh_phys@pku.edu.cn PhiPsi2022, Shanghai, 15-19 August 2022

Abstract

Based on e^+e^- collision samples corresponding to an integrated luminosity of 4.5 fb⁻¹ collected with BESIII detector at center-of-mass energies between 4.6 GeV and 4.7 GeV, the first partial wave analysis of the charmed baryonic decay $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$ is performed. From the analysis results, the decays of $\Lambda_c^+ \to \Lambda \rho(770)^+$ and $\Lambda_c^+ \to \Sigma(1385)\pi$ are studied for the first time. In combination with the world average branching fraction $\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^0)$, we determine their absolute branching fractions for the first time. In addition, according to the results of the amplitudes from the partial wave analysis, the decay asymmetry parameters $\alpha_{\Lambda\rho(770)^+}$, $\alpha_{\Sigma(1385)^+\pi^0}$ and $\alpha_{\Sigma(1385)^0\pi^+}$ can also be obtained. These results are reported for the first time.

Introduction

- BEPCII and BESIII
 - BEPCII/BESIII is a great upgrade for BES detector and BEPC accelerator.
 - BESIII consists of 4 sub-detectors:

Partial Wave Analysis (PWA)

- Using helicity amplitude formalism^[4], describe full amplitude with several quosi-two-body amplitude of different decay chains
 - For process $0 \to 1 + 2$: $A^{0 \to 1+2}_{\lambda_0,\lambda_1,\lambda_2} = H^{0 \to 1+2}_{\lambda_1,\lambda_2} D^{J_0*}_{\lambda_0,\lambda_1-\lambda_2}(\phi,\theta,0)$

MDC(Main Draft Chamber), TOF (Time-Of-Flight System),

EMC(Electromagnetic Calorimeter), MUC(Muon Chamber System).

- Motivation:
 - (1) BF of decay $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$ measured by BESIII with high precision[1], but no previous study on intermediate structure.
 - 2 Precise measurement provides more stringent test of theoretical models, help to deepen our understanding the dynamics of charmed baryon decays.
- ③ Resonant process $\Lambda_c^+ \to \Lambda \rho(770)^+$, complicated topological diagrams including both factorizable and non-factorizable contributions (a-d)^[2]; while $\Lambda_c^+ \to \Sigma(1385)\pi$, pure non-factorizable topological diagrams (e)^[3]:

- $D_{\lambda_0,\lambda_1-\lambda_2}^{J_0*}(\phi,\theta,0)$ denotes Wigner-*D* function
- Different decay chains:
 - $\Lambda_c^+ \to \Lambda \rho(770)^+(\theta_{\Lambda_c^+}^1), \rho(770)^+ \to \pi^+\pi^0(\theta_{\rho^+}, \phi_{\pi^0}^{\rho^+}), \Lambda \to p\pi^-(\theta_{\Lambda_1}, \phi_p^{\Lambda_1})$

(d) (e) **Topological diagrams contributing to decays** $\Lambda_c^+ \to \Lambda \rho(770)^+$ and $\Lambda_c^+ \to \Sigma(1385)\pi$

Event Selection

- Single Tag Method
 - Threshold production of $\Lambda_c^+ \overline{\Lambda}_c^-$ samples, only one side reconstructed
 - Variables energy difference $\Delta E \equiv E_{rec} E_{beam}$ and beam-constraint mass $M_{BC} \equiv \sqrt{E_{beam}^2/c^4 - p^2/c^2}$ used to extract signal candidates:

- Full amplitude is the coherent sum of all decay chains, then calculating module square and normalization
- Likelihood constructed by summing all signal candidates subtracting sideband backgrounds, then perform maximum log likelihood fit:

Projections of the fit results on invariant mass spectra

	Theoretical calculation		This work	PDG [1]
$10^2 \times \mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)$	4.81 ± 0.58 [2]	4.0 [5]	4.06 ± 0.52 ,	< 6
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0)$	2.8 ± 0.4 [3]	2.2 ± 0.4 [6]	5.86 ± 0.80	
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+)$	2.8 ± 0.4 [3]	2.2 ± 0.4 [6]	6.47 ± 0.96	
$lpha_{\Lambda ho(770)^+}$	-0.27 ± 0.04 [2]	-0.32 [5]	-0.763 ± 0.066	
$lpha_{\Sigma(1385)^+\pi^0}$	$-0.91^{+0.45}_{-0.10}$ [6]		$= 0.917 \pm 0.083$	
$lpha_{\Sigma(1385)^0\pi^+}$	$-0.91^{+0.45}_{-0.10}$ [6]		-0.79 ± 0.11	

Result of $M_{\rm BC}$ fits on data for each energy point

Results of branching fractions and decay asymmetry parameters

Summary

To summarize, based on e^+e^- collision sample corresponding to an integrated luminosity of 4.5 fb⁻¹ collected with BESIII detector at center-of-mass energies from 4.6 GeV to 4.7 GeV, the first PWA of $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0$ is performed. Our measurements serve as crucial inputs to improve the theoretical model calculations, and thus, help to deepen our understanding of the dynamics of the charmed baryon decay.

References

[1] P. A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. **2020**, 083C01 (2020).
[2] C. Q. Geng, C. W. Liu and T. H. Tsai, Phys. Rev. D **101**, 053002 (2020).
[3] Y. K. Hsiao, Q. Yi, S. T. Cai and H. J. Zhao, Eur. Phys. J. C **80**, 1067 (2020).

[4] S. U. Chung, Phys. Rev. D 48, 1225(1993).
[5] H. Y. Cheng and B. Tseng, Phys. Rev. D 46, 1042 (1992); Phys. Rev. D 55, 1697 (1997).
[6] C. Q. Geng, C. W. Liu, T. H. Tsai and Y. Yu, Phys. Rev. D 99, 114022 (2019).