

$\eta_1(1855)$ as a $K\bar{K}_1(1400)$ molecule— Hadronic molecules from meson exchange

* $K\bar{K}_1(1400)$ and related

* X.-K. Dong, Y.-H. Lin, B.-S. Zou, Sci.China Phys.Mech.Astron. 65 (2022) 6, 261011 * General threshold behaviors and hadronic molecule spectrum • X.-K. Dong, F.-K. Guo, B.-S. Zou, Phys.Rev.Lett. 126 (2021) 15, 152001 • X.-K. Dong, F.-K. Guo, B.-S. Zou, Progr. Phys. 41 (2021) 65-93 • X.-K. Dong, F.-K. Guo, B.-S. Zou, Commun. Theor. Phys. 73 (2021) 12, 125201

13th International Workshop on e^+e^- collisions from Phi to Psi

Xiang-Kun Dong Institute of Theoretical Physics, CAS

In collaboration with

F.-K. Guo, Y.-H. Lin and B.-S. Zou

16 Aug. 2022, Fudan University, Shanghai

- * $\eta_1(1855)$ and related (Hadronic molecules from meson exchange)
- Near threshold structures
- Spectrum of hadronic molecules
 - Charm-anticharm systems
 - Charm-charm systems

Contents

$\eta_1(1855)$ and related

* X.-K. Dong, Y.-H. Lin, B.-S. Zou, Sci.China Phys.Mech.Astron. 65 (2022) 6, 261011

$\eta_1(1855)$

 $J/\psi \rightarrow \gamma X \rightarrow \gamma \eta \eta'$

Resonance	$M ({\rm MeV}/c^2)$	Γ (MeV)	B.F.($\times 10^{-5}$)	S
$f_0(1500)$	1506	112	$1.81{\pm}0.11^{+0.19}_{-0.13}$	\gg
$f_0(1810)$	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11
$f_0(2020)$	$2010{\pm}6^{+6}_{-4}$	$203{\pm}9^{+13}_{-11}$	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24
$f_0(2330)$	$2312\pm7^{+7}_{-3}$	$65 \pm 10^{+3}_{-12}$	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13
$\eta_1(1855)$	$1855 \pm 9^{+6}_{-1}$	$188 \pm 18^{+3}_{-8}$	$0.27 \pm 0.04^{+0.02}_{-0.04}$	21
/	*	<u> </u>	0.01	
$f_2(1565)$	1542	122	$0.32 \pm 0.05^{+0.12}_{-0.02}$	8
$f_2(1565)$ $f_2(2010)$	1542 $2062 \pm 6^{+10}_{-7}$	$122 \\ 165 \pm 17^{+10}_{-5}$	$\begin{array}{c} 0.32 \pm 0.05 \substack{+0.12 \\ -0.02} \\ 0.71 \pm 0.06 \substack{+0.10 \\ -0.06} \end{array}$	8
$ \begin{array}{c} f_2(1565) \\ f_2(2010) \\ f_4(2050) \end{array} $	$ 1542 2062 \pm 6^{+10}_{-7} 2018 $	$122 \\ 165 \pm 17^{+10}_{-5} \\ 237$	$\begin{array}{c} 0.32 \pm 0.05 \substack{+0.12 \\ -0.02} \\ 0.71 \pm 0.06 \substack{+0.10 \\ -0.06} \\ 0.06 \pm 0.01 \substack{+0.03 \\ -0.01} \end{array}$	8 13 4
$ \begin{array}{r} f_2(1565) \\ \hline f_2(2010) \\ \hline f_4(2050) \\ \hline 0^{++} \text{ PHSP} \\ \end{array} $	1542 $2062\pm 6^{+10}_{-7}$ 2018	$122 \\ 165 \pm 17^{+10}_{-5} \\ 237 \\ -$	$\begin{array}{c} 0.32 \pm 0.05 \substack{+0.12 \\ -0.02} \\ 0.71 \pm 0.06 \substack{+0.10 \\ -0.06} \\ 0.06 \pm 0.01 \substack{+0.03 \\ -0.01} \\ 1.44 \pm 0.15 \substack{+0.10 \\ -0.20} \end{array}$	8 13 4 15
$f_{2}(1565)$ $f_{2}(2010)$ $f_{4}(2050)$ 0^{++} PHSP $h_{1}(1415)$	$ \begin{array}{r} 1542 \\ 2062 \pm 6^{+10}_{-7} \\ 2018 \\ - \\ 1416 \\ \end{array} $	$ 122 165 \pm 17^{+10}_{-5} 237 - 90 $	$\begin{array}{c} 0.32 \pm 0.05 \substack{+0.12 \\ -0.02} \\ 0.71 \pm 0.06 \substack{+0.10 \\ -0.06} \\ 0.06 \pm 0.01 \substack{+0.03 \\ -0.01} \\ 1.44 \pm 0.15 \substack{+0.10 \\ -0.20} \\ 0.08 \pm 0.01 \substack{+0.01 \\ -0.02} \end{array}$	8 13 4 15 10

BESIII, arXiv: 2202.00021

$\eta_1(1855)$ - binding

- Interactions between hadrons can be approximately described by meson exchange. (Resonance saturation), e.g.,
 - nuclear force from light meson exchange,
 - * vector-meson dominance in the resonance saturation of the low-energy constants in CHPT. G. Ecker, J. Gasser, A. Pich, E. de Rafael, NPB321(1989)311
- * $J^{PC} = 1^{-\pm} D\bar{D}_1(2420)$ v.s. Y(4260) and predicted exotic $\chi_{c1}(4240)$ X.-K. Dong, Y.-H. Lin, B.-S. Zou, Phys.Rev.D 101 (2020) 7, 076003
- Some $DK_1(1400)$ states predicted in X.-K. Dong, B.-S. Zou, Eur.Phys.J.A 57 (2021) 4, 139
- * Samiliar binding mechanism applied to $K\bar{K}_1(1400)$.

	-
	_
	_
	1
	1
	1
Ì	٦
	1
	+
	+
	┥
	-
	-
	_
	1
Ì	1
•	

$\eta_1(1855)$ - binding

Meson exchange

- * Mixing of two K_1
- $\begin{pmatrix} |K_1(1270)\rangle \\ |K_1(1400)\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta & -i\sin\theta \\ -i\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} |K_{1A}\rangle \\ |K_{1B}\rangle \end{pmatrix},$
- Form factor for the off-shell effects, $F(q, m, \Lambda) = \frac{\Lambda^2 - m^2}{\Lambda^2 - a^2}.$

leads to δ potential, short-range. We keep or drop such terms to see the effects.

Fourier transformation of $\frac{q^2}{q^2 + m^2}$

- Coupled-channel effects not • included, which may change the binding energy.
- Qualitatively agree with Mao-Jun Yan's results where coupled channels included, details see his report in the poster session.

$\eta_1(1855)$ - width

- Coupling between hadronic molecule and its components, $\mathscr{L}_{XKK_1} = yX^{\mu}K^{\dagger}K_{1\mu}^{\dagger} + \text{h.c.}$
- y can be estimated by Weinberg compositeness • criterion for loosely bound states with stable components, not applicable here ($\Gamma_{K_1(1400)} = 174$ MeV).
- Consider the self energy of $K_1(1400)$, assumed dominated by $K^*\pi$ loop (BR($K_1(1400) \rightarrow K^*\pi$) $= 94 \pm 6\%$)

Pole from 1 - VG = 0.

V assumed constant. *

$$G(s) = \int \frac{d^4 l}{(2\pi)^4} \frac{1}{l^2 - m_K^2 + i\epsilon} \frac{1}{(P - l)^2 - m_{K_1}^2 + im_{K_1} \Gamma_K}$$
$$\Gamma_{K_1}(s) = g_{K_1}^2 \frac{|\mathbf{q}|}{16\pi m_{K_1}^2} \left(3 + \frac{\mathbf{q}^2}{m_{K^*}^2}\right)$$

 $m_{K^*}^2$

$\eta_1(1855)$ - width

Partial width of $\eta_1(1855) \rightarrow K^*\bar{K}^*, \eta\eta'$. $K_1 \rightarrow K^*\pi$ has *D*-wave components

Table 1 Partial widths of the isoscalar $K\bar{K}_1(1400)$ molecular states with quantum numbers 1^{--} and 1^{-+} with $\Lambda_0 = 1.3$ GeV and $\Lambda_1 = 2.5$ GeV. All the decay widths are in unit of MeV. Here, we assume 5% *D*-wave contribution in the $K_1K^*\pi$ and $K_1K^*\eta$ vertex

Mode	Widths (MeV)		
widde	$1^{} E_B = 20 \text{ MeV}$	$1^{-+} E_B = 40 \text{ MeV}$	
$K^*ar{K}^*$	38.1	26.3	
$Kar{K}$	0.5	0	
$Kar{K}^*$	1.0	0.9	
$a_1\pi$	0	9.2	
$f_1\eta$	0	0.2	
$\eta\eta^\prime$	0	26.9	
$\sigma \omega$	0.2	0	
ho ho	0	0.04	
πho	6.4	0	
$\eta\omega$	0.4	0	
ωω	0	0.01	
$\omega\phi$	0	0.4	
$Kar{K}^*\pi$	130.0	105.0	
2-body	46.5	64.0	
Total	176.5	169.0	

Near threshold structures

& General threshold behaviors
& X.-K. Dong, F.-K. Guo, B.-S. Zou, Phys.Rev.Lett. 126 (2021) 15, 152001

Near threshold structures

fit from M.-L. Du et al.,

data from LHCb, Sci.Bull.65,1983(2020) fit from X.-K. Dong et al., *PRL*126,132001(2021)

 $X(3872), Y(4260), Z_{c}'s, Z_{b}'s, Z_{cs}, \cdots$

NaturePhys. 18 (2022) 7, 751-754 fit from M.-L. Du et al., PRD105,014024(2022)

Many new structures are near thresholds of a pair of hadron hadrons.

Why? What is the pattern?

Threshold cusp

- Single channel, *S*-wave, ERE

$$f_0^{-1}(k) = \frac{1}{a_0} + \frac{1}{2}r_0k^2 - ik + \mathcal{O}\left(\frac{k^4}{\beta^4}\right).$$

- * Close to threshold, scattering length approximation
 - * Cusp at threshold.
 - * Maximal at threshold for positive a_0 (attractive but no bound state).
 - * Half-maximum width $2/(\mu a_0^2)$; Virtual state pole at $E = -1/(2\mu a_0^2)$.
 - * Increasing attraction, $a_0 > 0$, bound state, peak below threshold.

There is always a cusp at the threshold due to the Unitarity of S-matrix for S-wave scattering amplitude.

Coupled channels

- Consider a two-channel system, construct a * nonrelativistic effective field theory (NREFT).
 - Energy region around the higher threshold $\Sigma_{2'}$ *
 - Expansion in powers of $E = \sqrt{s} \Sigma_{2}$,
 - Λ -dependence absorbed by V. *

Consider a production process, must go • through final-state interaction (unitarity)

Phenomenology

- * $p\bar{p}$ threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - * Clear abrupt drop.

- * $f_0(980)$ in
 - * $J/\psi \to \phi \pi^+ \pi^-$ (left)
 - * Driving channel: $K\bar{K}$.
 - * $J/\psi \rightarrow \omega \pi^+ \pi^-$ (right)
 - * Driving channel: $\pi\pi$.

Phenomenology

- Production of states with hidden-charm and hidden-bottom
 - * open-flavor much easier than $Q\bar{Q}$ + light hadrons,
 - * peaks around threshold of a pair of openflavor hadrons for attractive interaction.
- Threshold structures should be more pronounced in bottom than in charm.
- * Resonance saturation
 - vector meson dominance

$H\bar{H}$	$D^{(*)}\bar{D}^{(*)}[0,1^{\dagger}];$	$D_s^{(*)}\bar{D}^{(*)} \ [\frac{1}{2}^{\dagger}];$	$D_s^{(*)}\bar{D}_s^{(*)}$
	$X(3872), Z_c(3900, 4020)$	$Z_{cs}(3985)$	X(4140)
	$Z_b(10610, 10650)$		X(3960)
$\bar{H}T$	$\bar{D}^{(*)}\Xi_c [0];$	$\bar{D}_s^{(*)} \Lambda_c \left[0^\dagger \right]$	
	$P_{cs}(4459) P_{cs}(4338)$		
$\bar{H}S$	$\bar{D}^{(*)}\Sigma_c^{(*)}[\frac{1}{2}];$	$\bar{D}_{s}^{(*)}\Sigma_{c}^{(*)}[1^{\dagger}];$	$\bar{D}^{(*)}\Xi_c^{\prime(*)}$
	$P_c(4312, 4440, 4457)$		
	$\left \bar{D}^{(*)} \Omega_c^{(*)} \left[\frac{1}{2}^{\dagger} \right] \right $		
$T\bar{T}$	$\Lambda_c \bar{\Lambda}_c [0];$	$\Lambda_c \bar{\Xi}_c \left[\frac{1}{2}\right];$	$\Xi_c \bar{\Xi}_c \left[0\right]$
$T\bar{S}$	$\Lambda_c \bar{\Sigma}_c^{(*)} [1];$	$\Lambda_c \bar{\Xi}_c^{\prime(*)} \left[\frac{1}{2}\right];$	$\Lambda_c \bar{\Omega}_c^{(*)}$
	$\Xi_c \bar{\Sigma}_c^{(*)} \left[\frac{3}{2}^{\dagger}, \frac{1}{2}\right];$	$\Xi_c \bar{\Xi}_c^{\prime(*)} [1,0];$	$\Xi_c \bar{\Omega}_c^{(*)}$
$S\bar{S}$	$\Sigma_{c}^{(*)}\bar{\Sigma}_{c}^{(*)}\left[2^{\dagger},1,0\right];$	$\Sigma_c^{(*)} \bar{\Xi}_c^{\prime(*)} \left[\frac{3}{2}^{\dagger}, \frac{1}{2}\right];$	$\Sigma_c^{(*)}\bar{\Omega}_c^{(*)}$
	$\left \Xi_{c}^{'(*)}\bar{\Xi}_{c}^{'(*)}\left[1,0\right];\right.$	$\Xi_c^{\prime(*)}\bar{\Omega}_c^{(*)}\left[\frac{1}{2}\right];$	$\Omega_c^{(*)}\bar{\Omega}_c^{(*)}$

ρ,ω,φ,ψ†

Spectrum of hadronic molecules

- * Hadronic molecule spectrum
 - X.-K. Dong, F.-K. Guo, B.-S. Zou, Progr. Phys. 41 (2021) 65-93 • X.-K. Dong, F.-K. Guo, B.-S. Zou, Commun. Theor. Phys. 73 (2021) 12, 125201

- * Approximations:
 - * Constant contact terms (V) saturated by light-vector-meson exchange,
 - G. Ecker, J. Gasser, A. Pich, E. de Rafael, NPB321(1989)311
- * Single channels.
- * Neglecting mixing with normal charmonia.
- Resummation using the Bethe-Salpether equation 7
 - Gaussian regularized G at threshold

$$\begin{split} G(E) =& \frac{1}{16\pi^2} \left\{ a(\mu) + \log \frac{m_1^2}{\mu^2} + \frac{m_2^2 - m_1^2 + s}{2s} \log \frac{m_2^2}{m_1^2} \\ &+ \frac{k}{E} [\log(2kE + s + \Delta) + \log(2kE + s - \Delta) - \log(2kE - s + \Delta) - \log(2kE - s - \Delta)] \right\} \\ \text{es appear as bound or virtual state poles of the T matrix.} \end{split}$$

Hadronic molecule

Method

* Similar to the vector-meson dominance in the resonance saturation of the low-energy constants in CHPT.

$$T = (1 - VG)^{-1}V.$$

* G: two-point scalar loop integral regularized using dim.reg. with a subtraction constant matched to a

X(3872) and related states

Isoscalar vectors and related states

- * Y(4260)/ ψ (4230) as a $\overline{D}D_1(2420)$ bound state.
- * Vector charmonia around 4.4 GeV unclear.
- * Evidence for $1^{--} \Lambda_c \bar{\Lambda}_c$ bound state in BESIII data. Sommerfeld factor & Near-threshold pole.
- * Many 1⁻⁻ states above 4.8 GeV, for Super Tau-Charm Facility (STCF).

- * $\psi_0(4360)$ as a $D^*\overline{D}_1$ molecule * only one with exotic $J^{PC} = 0^{--}$ nearby in hadronic picture.
 - * More accurate treatments in arXiv: 2205.10994 (accepted by PRL) including coupled channel and 3-body effects.
 - * Robust prediction in hadronic picture.
 - * Details see the report in the poster session.

Data taken from BESIII, PRL120(2018)132001

Hidden-charm pentaquarks

double-charm systems

- * $T_{cc}^+(3875)$ as an isoscalar DD^* bound or virtual state.
- * D^*D^* predicted to be similar.
- * Similar in P = sector.
- * Isoscalar $\Sigma_c^{(*)}\Sigma_c^{(*)}$ dibaryons very likely bound.

* Similar when $D_{(s)}^{(*)}$ is replaced by $D_{1,2(s)}^{(*)}$.

States in other channels not shown

double-charm partners of $P_c \& P_{cs}$

* For isoscalar, more attractive in double charm systems than in hidden charm ones.

- * The recently observed $\eta_1(1855)$ interpreted as a $K\bar{K}_1(1400)$ molecule.
- * Threshold structures (threshold cusp or near-threshold peak) are generally expected for a pair of heavy hadrons with attractive interaction.
 - * strong attraction, then hadronic molecules below threshold.
 - * otherwise threshold cusps.
- * Structures should be more prominent in bottom than in charm.
- Hundreds of hidden-charm and double-charm hadronic molecules predicted. •
 - * consistent with present experimental data.

Thanks for your attention

Summary